On long cycles through four prescribed vertices of a polyhedral graph

Jochen Harant; Stanislav Jendrol'; Hansjoachim Walther

Discussiones Mathematicae Graph Theory (2008)

  • Volume: 28, Issue: 3, page 441-451
  • ISSN: 2083-5892

Abstract

top
For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.

How to cite

top

Jochen Harant, Stanislav Jendrol', and Hansjoachim Walther. "On long cycles through four prescribed vertices of a polyhedral graph." Discussiones Mathematicae Graph Theory 28.3 (2008): 441-451. <http://eudml.org/doc/270764>.

@article{JochenHarant2008,
abstract = {For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.},
author = {Jochen Harant, Stanislav Jendrol', Hansjoachim Walther},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graph; long cycle; prescribed vertices},
language = {eng},
number = {3},
pages = {441-451},
title = {On long cycles through four prescribed vertices of a polyhedral graph},
url = {http://eudml.org/doc/270764},
volume = {28},
year = {2008},
}

TY - JOUR
AU - Jochen Harant
AU - Stanislav Jendrol'
AU - Hansjoachim Walther
TI - On long cycles through four prescribed vertices of a polyhedral graph
JO - Discussiones Mathematicae Graph Theory
PY - 2008
VL - 28
IS - 3
SP - 441
EP - 451
AB - For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.
LA - eng
KW - graph; long cycle; prescribed vertices
UR - http://eudml.org/doc/270764
ER -

References

top
  1. [1] T. Böhme, F. Göring and J. Harant, Menger's theorem, J. Graph Theory 37 (2001) 35-36, doi: 10.1002/jgt.1001. Zbl0988.05057
  2. [2] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2000). 
  3. [3] A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982) 317-322, doi: 10.1016/0012-365X(82)90299-0. Zbl0475.05053
  4. [4] L. Lovász, Combinatorial problems and exercises (Akadémiai Kiadó, Budapest, Hungary 1979) Section 6, Problem 42. 
  5. [5] J.W. Moon and L. Moser, Simple paths on polyhedra, Pacific J. Math. 13 (1963) 629-631. Zbl0115.41001
  6. [6] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory (B) 47 (1989) 220-230, doi: 10.1016/0095-8956(89)90021-X. Zbl0686.05031
  7. [7] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8. Zbl0070.18403
  8. [8] W.T. Tutte, Bridges and Hamiltonian circuits in planar graphs, Aequationes Math. 15 (1977) 1-33, doi: 10.1007/BF01837870. Zbl0357.05039

NotesEmbed ?

top

You must be logged in to post comments.