On long cycles through four prescribed vertices of a polyhedral graph
Jochen Harant; Stanislav Jendrol'; Hansjoachim Walther
Discussiones Mathematicae Graph Theory (2008)
- Volume: 28, Issue: 3, page 441-451
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Böhme, F. Göring and J. Harant, Menger's theorem, J. Graph Theory 37 (2001) 35-36, doi: 10.1002/jgt.1001. Zbl0988.05057
- [2] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2000).
- [3] A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982) 317-322, doi: 10.1016/0012-365X(82)90299-0. Zbl0475.05053
- [4] L. Lovász, Combinatorial problems and exercises (Akadémiai Kiadó, Budapest, Hungary 1979) Section 6, Problem 42.
- [5] J.W. Moon and L. Moser, Simple paths on polyhedra, Pacific J. Math. 13 (1963) 629-631. Zbl0115.41001
- [6] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory (B) 47 (1989) 220-230, doi: 10.1016/0095-8956(89)90021-X. Zbl0686.05031
- [7] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8. Zbl0070.18403
- [8] W.T. Tutte, Bridges and Hamiltonian circuits in planar graphs, Aequationes Math. 15 (1977) 1-33, doi: 10.1007/BF01837870. Zbl0357.05039