Graph domination in distance two
Gábor Bacsó; Attila Tálos; Zsolt Tuza
Discussiones Mathematicae Graph Theory (2005)
- Volume: 25, Issue: 1-2, page 121-128
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Bacsó and Zs. Tuza, A characterization of graphs without long induced paths, J. Graph Theory 14 (1990) 455-464, doi: 10.1002/jgt.3190140409.
- [2] G. Bacsó and Zs. Tuza, Dominating cliques in P₅-free graphs, Periodica Math. Hungar. 21 (1990) 303-308, doi: 10.1007/BF02352694.
- [3] G. Bacsó and Zs. Tuza, Domination properties and induced subgraphs, Discrete Math. 1 (1993) 37-40.
- [4] G. Bacsó and Zs. Tuza, Dominating subgraphs of small diameter, J. Combin. Inf. Syst. Sci. 22 (1997) 51-62.
- [5] G. Bacsó and Zs. Tuza, Structural domination in graphs, Ars Combinatoria 63 (2002) 235-256.
- [6] M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, pp. 101-116 in [10]. Zbl0729.05043
- [7] P. Erdős, M. Saks and V.T. Sós Maximum induced trees in graphs, J. Combin. Theory (B) 41 (1986) 61-79, doi: 10.1016/0095-8956(86)90028-6. Zbl0603.05023
- [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, N.Y., 1998). Zbl0890.05002
- [9] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Nath. Soc. 3 (1962) 789-795, doi: 10.1090/S0002-9939-1962-0172273-0. Zbl0109.16402
- [10] - Topics on Domination (R. Laskar and S. Hedetniemi, eds.), Annals of Discrete Math. 86 (1990).