# In-degree sequence in a general model of a random digraph

Zbigniew Palka; Monika Sperling

Discussiones Mathematicae Graph Theory (2006)

- Volume: 26, Issue: 2, page 193-207
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topZbigniew Palka, and Monika Sperling. "In-degree sequence in a general model of a random digraph." Discussiones Mathematicae Graph Theory 26.2 (2006): 193-207. <http://eudml.org/doc/270779>.

@article{ZbigniewPalka2006,

abstract = {A general model of a random digraph D(n,P) is considered. Based on a precise estimate of the asymptotic behaviour of the distribution function of the binomial law, a problem of the distribution of extreme in-degrees of D(n,P) is discussed.},

author = {Zbigniew Palka, Monika Sperling},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {degree sequence; general model of a random digraph},

language = {eng},

number = {2},

pages = {193-207},

title = {In-degree sequence in a general model of a random digraph},

url = {http://eudml.org/doc/270779},

volume = {26},

year = {2006},

}

TY - JOUR

AU - Zbigniew Palka

AU - Monika Sperling

TI - In-degree sequence in a general model of a random digraph

JO - Discussiones Mathematicae Graph Theory

PY - 2006

VL - 26

IS - 2

SP - 193

EP - 207

AB - A general model of a random digraph D(n,P) is considered. Based on a precise estimate of the asymptotic behaviour of the distribution function of the binomial law, a problem of the distribution of extreme in-degrees of D(n,P) is discussed.

LA - eng

KW - degree sequence; general model of a random digraph

UR - http://eudml.org/doc/270779

ER -

## References

top- [1] B. Bollobás, Degree sequences of random graphs, Discrete Math. 33 (1981) 1-19, doi: 10.1016/0012-365X(81)90253-3. Zbl0447.05038
- [2] B. Bollobás, Vertices of given degree in a random graph, J. Graph Theory 6 (1982) 147-155, doi: 10.1002/jgt.3190060209. Zbl0499.05056
- [3] P. Erdős and A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hung. 12 (1961) 261-267, doi: 10.1007/BF02066689. Zbl0103.16302
- [4] W. Feller, An introduction to Probability and Its Applications, Vol. 1, 2nd ed. (John Wiley, 1957). Zbl0077.12201
- [5] G. Ivchenko, On the asymptotic behaviour of degrees of vertices in a random graph, Theory Probab. Appl. 18 (1973) 188-196, doi: 10.1137/1118020.
- [6] J. Jaworski and I. Smit, On a random digraph, Annals of Discrete Math. 33 (1987) 111-127. Zbl0633.05030
- [7] J. Jaworski and M. Karoński, On the connectivity of graphs generated by a sum of random mappings, J. Graph Theory 17 (1993) 135-150, doi: 10.1002/jgt.3190170203. Zbl0782.05073
- [8] J. Jaworski and Z. Palka, Remarks on a general model of a random digraph, Ars Combin. 65 (2002) 135-144. Zbl1071.05574
- [9] Z. Palka, Extreme degrees in random graphs, J. Graph Theory 11 (1987) 121-134, doi: 10.1002/jgt.3190110202. Zbl0672.05069
- [10] Z. Palka, Rulers and slaves in a random graph, Graphs and Combinatorics 2 (1986) 165-172, doi: 10.1007/BF01788089. Zbl0606.92028
- [11] Z. Palka, Asymptotic properties of random graphs, Dissertationes Math. (Rozprawy Mat.) 275 (1988). Zbl0675.05055
- [12] Z. Palka, Some remarks about extreme degrees in a random graph, Math. Proc. Camb. Philos. Soc. 3 (1994) 13-26.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.