On super (a,d)-edge antimagic total labeling of certain families of graphs
P. Roushini Leely Pushpam; A. Saibulla
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 3, page 535-543
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Bača and C. Barrientos, Graceful and edge antimagic labelings, Ars Combin. 96 (2010) 505-513.
- [2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New construction of magic and antimagic graph labeling, Util. Math. 60 (2001) 229-239. Zbl1011.05056
- [3] H. Enomoto, A.S. Llodo, T. Nakamigawa and G. Ringel, Super edge magic graphs, SUT J. Math. 34 (1998) 105-109. Zbl0918.05090
- [4] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168, doi: 10.1016/S0012-365X(00)00314-9. Zbl0977.05120
- [5] J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010) #DS6. Zbl0953.05067
- [6] F. Harrary, Graph Theory ( Addison-Wesley, 1994).
- [7] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Boston, San Diego, New York, London, 1990). Zbl0703.05001
- [8] S.M. Hegde and Sudhakar Shetty, On magic graphs, Australas. J. Combin. 27 (2003) 277-284.
- [9] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1. Zbl0213.26203
- [10] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australian Workshop Combin. Algor., Hunrer Valley, Australia (2000) 179-189.
- [11] K.A. Sugeng and M. Miller, Relationship between adjacency matrices and super (a, d)-edge antimagic total labelings of graphs, J. Combin. Math. Combin. Comput. 55 (2005) 71-82. Zbl1100.05087
- [12] K.A. Sugeng, M. Miller and M. Bača, Super edge antimagic total labelings, Util. Math. 71 (2006) 131-141.