On total vertex irregularity strength of graphs
K. Muthu Guru Packiam; Kumarappan Kathiresan
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 1, page 39-45
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topK. Muthu Guru Packiam, and Kumarappan Kathiresan. "On total vertex irregularity strength of graphs." Discussiones Mathematicae Graph Theory 32.1 (2012): 39-45. <http://eudml.org/doc/270795>.
@article{K2012,
abstract = {Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.},
author = {K. Muthu Guru Packiam, Kumarappan Kathiresan},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graph labeling; irregularity strength; total assignment; vertex irregular total labeling},
language = {eng},
number = {1},
pages = {39-45},
title = {On total vertex irregularity strength of graphs},
url = {http://eudml.org/doc/270795},
volume = {32},
year = {2012},
}
TY - JOUR
AU - K. Muthu Guru Packiam
AU - Kumarappan Kathiresan
TI - On total vertex irregularity strength of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 1
SP - 39
EP - 45
AB - Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.
LA - eng
KW - graph labeling; irregularity strength; total assignment; vertex irregular total labeling
UR - http://eudml.org/doc/270795
ER -
References
top- [1] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38, doi: 10.1016/S0012-365X(98)00112-5. Zbl0956.05092
- [2] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388,10.1016/j.disc.2005.11.075. Zbl1115.05079
- [3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
- [4] J.H. Dinitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m× n grid, J. Graph Theory 16 (1992) 355-374, doi: 10.1002/jgt.3190160409. Zbl0771.05055
- [5] A. Gyárfás, The irregularity strength of is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9. Zbl0681.05066
- [6] S. Jendrol' and M. Tkáč, The irregularity strength of tKₚ, Discrete Math. 145 (1995) 301-305, doi: 10.1016/0012-365X(94)E0043-H. Zbl0834.05029
- [7] KM. Kathiresan and K. Muthugurupackiam, Change in irregularity strength by an edge, J. Combin. Math. Combin. Comp. 64 (2008) 49-64. Zbl1194.05140
- [8] KM. Kathiresan and K. Muthugurupackiam, A study on stable, positive and negative edges with respect to irregularity strength of a graph, Ars Combin. (to appear). Zbl1265.05535
- [9] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041. Zbl1208.05014
- [10] K. Wijaya, Slamin, Surahmat and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comp. 55 (2005) 129-136. Zbl1100.05090
- [11] K. Wijaya and Slamin, Total vertex irregular labelings of wheels, fans, suns and friendship graph, J. Combin. Math. Combin. Comp. 65 (2008) 103-112. Zbl1192.05139
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.