p-Wiener intervals and p-Wiener free intervals

Kumarappan Kathiresan; S. Arockiaraj

Discussiones Mathematicae Graph Theory (2012)

  • Volume: 32, Issue: 1, page 121-127
  • ISSN: 2083-5892

Abstract

top
A positive integer n is said to be Wiener graphical, if there exists a graph G with Wiener index n. In this paper, we prove that any positive integer n(≠ 2,5) is Wiener graphical. For any positive integer p, an interval [a,b] is said to be a p-Wiener interval if for each positive integer n ∈ [a,b] there exists a graph G on p vertices such that W(G) = n. For any positive integer p, an interval [a,b] is said to be p-Wiener free interval (p-hyper-Wiener free interval) if there exist no graph G on p vertices with a ≤ W(G) ≤ b (a ≤ WW(G) ≤ b). In this paper, we determine some p-Wiener intervals and p-Wiener free intervals for some fixed positive integer p.

How to cite

top

Kumarappan Kathiresan, and S. Arockiaraj. "p-Wiener intervals and p-Wiener free intervals." Discussiones Mathematicae Graph Theory 32.1 (2012): 121-127. <http://eudml.org/doc/270806>.

@article{KumarappanKathiresan2012,
abstract = {A positive integer n is said to be Wiener graphical, if there exists a graph G with Wiener index n. In this paper, we prove that any positive integer n(≠ 2,5) is Wiener graphical. For any positive integer p, an interval [a,b] is said to be a p-Wiener interval if for each positive integer n ∈ [a,b] there exists a graph G on p vertices such that W(G) = n. For any positive integer p, an interval [a,b] is said to be p-Wiener free interval (p-hyper-Wiener free interval) if there exist no graph G on p vertices with a ≤ W(G) ≤ b (a ≤ WW(G) ≤ b). In this paper, we determine some p-Wiener intervals and p-Wiener free intervals for some fixed positive integer p.},
author = {Kumarappan Kathiresan, S. Arockiaraj},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Wiener index of a graph; Wiener graphical; p-Wiener interval; p-Wiener free interval; hyper-Wiener index of a graph; radius; diameter; -Wiener interval; -Wiener free interval},
language = {eng},
number = {1},
pages = {121-127},
title = {p-Wiener intervals and p-Wiener free intervals},
url = {http://eudml.org/doc/270806},
volume = {32},
year = {2012},
}

TY - JOUR
AU - Kumarappan Kathiresan
AU - S. Arockiaraj
TI - p-Wiener intervals and p-Wiener free intervals
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 1
SP - 121
EP - 127
AB - A positive integer n is said to be Wiener graphical, if there exists a graph G with Wiener index n. In this paper, we prove that any positive integer n(≠ 2,5) is Wiener graphical. For any positive integer p, an interval [a,b] is said to be a p-Wiener interval if for each positive integer n ∈ [a,b] there exists a graph G on p vertices such that W(G) = n. For any positive integer p, an interval [a,b] is said to be p-Wiener free interval (p-hyper-Wiener free interval) if there exist no graph G on p vertices with a ≤ W(G) ≤ b (a ≤ WW(G) ≤ b). In this paper, we determine some p-Wiener intervals and p-Wiener free intervals for some fixed positive integer p.
LA - eng
KW - Wiener index of a graph; Wiener graphical; p-Wiener interval; p-Wiener free interval; hyper-Wiener index of a graph; radius; diameter; -Wiener interval; -Wiener free interval
UR - http://eudml.org/doc/270806
ER -

References

top
  1. [1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Reading, 1990). Zbl0688.05017
  2. [2] P.G. Doyle and J.L. Snell, Random Walks and Electric Networks (Math. Assoc., Washington, 1984). Zbl0583.60065
  3. [3] R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (101) 1976. Zbl0329.05112
  4. [4] D. Goldman, S. Istrail, G. Lancia and A. Picolboni, Algorithmic strategies in Combinatorial Chemistry, in: 11th ACM-SIAM Symposium, Discrete Algorithms (2000) 275-284. Zbl0963.92015
  5. [5] I. Gutman, Y.N. Yeh, S.L. Lee and J.C. Chen, Wiener number of dendrimers, Comm. Math. Chem., 30 (1994) 103-115. Zbl0798.05052
  6. [6] I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Lett. 364 (2002) 352-356, doi: 10.1016/S0009-2614(02)01343-X. 
  7. [7] KM. Kathiresan and S. Arockiaraj, Wiener indices of generalized complementary prisms, Bull. Inst. Combin. Appl. 59 (2010) 31-45. Zbl1221.05116
  8. [8] S. Klavžar, P. Zigert and I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229-233, doi: 10.1016/S0097-8485(99)00062-5. Zbl1034.92040
  9. [9] Liu Mu-huo and Xuezhong Tan, The first to (k+1)-th smallest Wiener (Hyper -Wiener) indices of connected graphs, Kragujevac J. Math. 32 (2009) 109-115. Zbl1199.05091
  10. [10] S. Nikolić, N. Trinajstić and Z. Mihalić, The Wiener index: Development and applications, Croat. Chem. Acta. 68 (1995) 105-129. 
  11. [11] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.