The competition numbers of Johnson graphs

Suh-Ryung Kim; Boram Park; Yoshio Sano

Discussiones Mathematicae Graph Theory (2010)

  • Volume: 30, Issue: 3, page 449-459
  • ISSN: 2083-5892

How to cite

top

Suh-Ryung Kim, Boram Park, and Yoshio Sano. "The competition numbers of Johnson graphs." Discussiones Mathematicae Graph Theory 30.3 (2010): 449-459. <http://eudml.org/doc/270824>.

@article{Suh2010,
abstract = {},
author = {Suh-Ryung Kim, Boram Park, Yoshio Sano},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {competition graph; competition number; edge clique cover; Johnson graph},
language = {eng},
number = {3},
pages = {449-459},
title = {The competition numbers of Johnson graphs},
url = {http://eudml.org/doc/270824},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Suh-Ryung Kim
AU - Boram Park
AU - Yoshio Sano
TI - The competition numbers of Johnson graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 3
SP - 449
EP - 459
AB -
LA - eng
KW - competition graph; competition number; edge clique cover; Johnson graph
UR - http://eudml.org/doc/270824
ER -

References

top
  1. [1] H.H. Cho and S.-R. Kim, The competition number of a graph having exactly one hole, Discrete Math. 303 (2005) 32-41, doi: 10.1016/j.disc.2004.12.016. Zbl1079.05041
  2. [2] H.H. Cho, S.-R. Kim and Y. Nam, On the trees whose 2-step competition numbers are two, Ars Combin. 77 (2005) 129-142. Zbl1164.05329
  3. [3] J.E. Cohen, Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND Corporation (Santa Monica, CA, 1968). 
  4. [4] J.E. Cohen, Food webs and Niche space (Princeton University Press, Princeton, NJ, 1978). 
  5. [5] R.D. Dutton and R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983) 315-317, doi: 10.1016/0166-218X(83)90085-9. Zbl0521.05057
  6. [6] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207 (Springer-Verlag, 2001). Zbl0968.05002
  7. [7] S.G. Hartke, The elimination procedure for the phylogeny number, Ars Combin. 75 (2005) 297-311. Zbl1071.05041
  8. [8] S.G. Hartke, The elimination procedure for the competition number is not optimal, Discrete Appl. Math. 154 (2006) 1633-1639, doi: 10.1016/j.dam.2005.11.009. Zbl1100.05045
  9. [9] G.T. Helleloid, Connected triangle-free m-step competition graphs, Discrete Appl. Math. 145 (2005) 376-383, doi: 10.1016/j.dam.2004.06.010. Zbl1066.05120
  10. [10] W. Ho, The m-step, same-step, and any-step competition graphs, Discrete Appl. Math. 152 (2005) 159-175, doi: 10.1016/j.dam.2005.04.005. Zbl1080.05095
  11. [11] S.-R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory, (J. Gimbel, J.W. Kennedy, and L.V. Quintas, eds.), Annals of Discrete Mathematics 55 (North-Holland, Amsterdam, 1993) 313-326. 
  12. [12] S.-R. Kim, Graphs with one hole and competition number one, J. Korean Math. Soc. 42 (2005) 1251-1264, doi: 10.4134/JKMS.2005.42.6.1251. Zbl1082.05046
  13. [13] S.-R. Kim and F.S. Roberts, Competition numbers of graphs with a small number of triangles, Discrete Appl. Math. 78 (1997) 153-162, doi: 10.1016/S0166-218X(97)00026-7. Zbl0889.05057
  14. [14] S.-R. Kim and Y. Sano, The competition numbers of complete tripartite graphs, Discrete Appl. Math. 156 (2008) 3522-3524, doi: 10.1016/j.dam.2008.04.009. Zbl1200.05173
  15. [15] J.R. Lundgren, Food Webs, Competition Graphs, Competition-Common Enemy Graphs, and Niche Graphs, in: Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, IMH Volumes in Mathematics and Its Application 17 (Springer-Verlag, New York, 1989) 221-243. 
  16. [16] R.J. Opsut, On the computation of the competition number of a graph, SIAM J. Algebraic Discrete Methods 3 (1982) 420-428, doi: 10.1137/0603043. Zbl0512.05032
  17. [17] A. Raychaudhuri and F.S. Roberts, Generalized competition graphs and their applications, Methods of Operations Research, 49 (Anton Hain, Königstein, West Germany, 1985) 295-311. Zbl0572.05050
  18. [18] F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, in: Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976) (1978) 477-490. 
  19. [19] F.S. Roberts and L. Sheng, Phylogeny numbers for graphs with two triangles, Discrete Appl. Math. 103 (2000) 191-207, doi: 10.1016/S0166-218X(99)00209-7. Zbl0953.05027
  20. [20] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329, doi: 10.1016/j.dam.2004.02.010. Zbl1056.05103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.