Approximation numbers of composition operators on H p

Daniel Li; Hervé Queffélec; Luis Rodríguez-Piazza

Concrete Operators (2015)

  • Volume: 2, Issue: 1, page 98-109, electronic only
  • ISSN: 2299-3282

Abstract

top
give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞

How to cite

top

Daniel Li, Hervé Queffélec, and Luis Rodríguez-Piazza. " Approximation numbers of composition operators on H p ." Concrete Operators 2.1 (2015): 98-109, electronic only. <http://eudml.org/doc/270832>.

@article{DanielLi2015,
abstract = {give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞},
author = {Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza},
journal = {Concrete Operators},
keywords = {approximation numbers; Blaschke product; composition operator; Hardy space; interpolation sequence},
language = {eng},
number = {1},
pages = {98-109, electronic only},
title = { Approximation numbers of composition operators on H p },
url = {http://eudml.org/doc/270832},
volume = {2},
year = {2015},
}

TY - JOUR
AU - Daniel Li
AU - Hervé Queffélec
AU - Luis Rodríguez-Piazza
TI - Approximation numbers of composition operators on H p
JO - Concrete Operators
PY - 2015
VL - 2
IS - 1
SP - 98
EP - 109, electronic only
AB - give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞
LA - eng
KW - approximation numbers; Blaschke product; composition operator; Hardy space; interpolation sequence
UR - http://eudml.org/doc/270832
ER -

References

top
  1. [1] B. Carl, A. Hinrichs, Optimal Weyl-type inequalities for operators in Banach spaces, Positivity 11 (2007), 41–55. Zbl1123.47019
  2. [2] B. Carl, I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Mathematics, Vol. 98 (1990). Zbl0705.47017
  3. [3] B. Carl, H. Triebel, Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators in Banach spaces, Math. Ann. 251 (1980), 129–133. Zbl0465.47019
  4. [4] P. L. Duren, Theory of Hp Spaces, Dover Public. (2000). 
  5. [5] J. Garnett, Bounded Analytic Functions, revised first edition, Graduate Texts in Mathematics 236, Springer-Verlag (2007). 
  6. [6] K. Hoffman, Banach Spaces of Analytic Functions, revised first edition, Prentice-Hall (1962). 
  7. [7] C. V. Hutton, On the approximation numbers of an operator and its adjoint, Math. Ann. 210 (1974), 277–280. Zbl0272.47017
  8. [8] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Some new properties of composition operators associated to lensmaps, Israel J. Math. 195 (2) (2013), 801–824. Zbl1318.47039
  9. [9] D. Li and H. Queffélec, Introduction à l’étude des espaces de Banach. Analyse et probabilités, Cours Spécialisés 12, Société Mathématique de France, Paris (2004). 
  10. [10] D. Li, H. Queffélec, L. Rodríguez-Piazza, On approximation numbers of composition operators, J. Approx. Theory 164 (4) (2012), 431–459. Zbl1246.47007
  11. [11] D. Li, H. Queffélec, L. Rodríguez-Piazza, Estimates for approximation numbers of some classes of composition operators on the Hardy space, Ann. Acad. Sci. Fenn. Math. 38 (2013), 547–564. Zbl1295.47011
  12. [12] D. Li, H. Queffélec, L. Rodríguez-Piazza, A spectral radius type formula for approximation numbers of composition operators, J. Funct. Anal., 267 (2014), no. 12, 4753–4774. Zbl1325.47045
  13. [13] R. Mortini, Thin interpolating sequences in the disk, Arch. Math. 92, no. 5 (2009), 504–518. Zbl1179.30058
  14. [14] N. Nikol’skiˇı, A treatise on the Shift Operator, Grundlehren der Math. 273, Springer-Verlag (1986). 
  15. [15] S. Petermichl, S. Treil, B.D. Wick, Carleson potentials and the reproducing kernel thesis for embedding theorems, Illinois J. Math. 51, no. 4 (2007), 1249–1263. Zbl1152.30036
  16. [16] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. LI (1974), 201–223. Zbl0294.47018
  17. [17] A. Plichko, Rate of decay of the Bernstein numbers, Zh. Mat. Fiz. Anal. Geom. 9, no. 1 (2013), 59–72. Zbl1294.47030
  18. [18] H. Queffélec, K. Seip, Decay rates for approximation numbers of composition operators, J. Anal. Math., 125 (2015), no. 1, 371–399. Zbl1316.47022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.