Approximation numbers of composition operators on H p
Daniel Li; Hervé Queffélec; Luis Rodríguez-Piazza
Concrete Operators (2015)
- Volume: 2, Issue: 1, page 98-109, electronic only
 - ISSN: 2299-3282
 
Access Full Article
topAbstract
topHow to cite
topDaniel Li, Hervé Queffélec, and Luis Rodríguez-Piazza. " Approximation numbers of composition operators on H p ." Concrete Operators 2.1 (2015): 98-109, electronic only. <http://eudml.org/doc/270832>.
@article{DanielLi2015,
	abstract = {give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞},
	author = {Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza},
	journal = {Concrete Operators},
	keywords = {approximation numbers; Blaschke product; composition operator; Hardy space; interpolation sequence},
	language = {eng},
	number = {1},
	pages = {98-109, electronic only},
	title = { Approximation numbers of composition operators on H p },
	url = {http://eudml.org/doc/270832},
	volume = {2},
	year = {2015},
}
TY  - JOUR
AU  - Daniel Li
AU  - Hervé Queffélec
AU  - Luis Rodríguez-Piazza
TI  -  Approximation numbers of composition operators on H p 
JO  - Concrete Operators
PY  - 2015
VL  - 2
IS  - 1
SP  - 98
EP  - 109, electronic only
AB  - give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞
LA  - eng
KW  - approximation numbers; Blaschke product; composition operator; Hardy space; interpolation sequence
UR  - http://eudml.org/doc/270832
ER  - 
References
top- [1] B. Carl, A. Hinrichs, Optimal Weyl-type inequalities for operators in Banach spaces, Positivity 11 (2007), 41–55. Zbl1123.47019
 - [2] B. Carl, I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Mathematics, Vol. 98 (1990). Zbl0705.47017
 - [3] B. Carl, H. Triebel, Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators in Banach spaces, Math. Ann. 251 (1980), 129–133. Zbl0465.47019
 - [4] P. L. Duren, Theory of Hp Spaces, Dover Public. (2000).
 - [5] J. Garnett, Bounded Analytic Functions, revised first edition, Graduate Texts in Mathematics 236, Springer-Verlag (2007).
 - [6] K. Hoffman, Banach Spaces of Analytic Functions, revised first edition, Prentice-Hall (1962).
 - [7] C. V. Hutton, On the approximation numbers of an operator and its adjoint, Math. Ann. 210 (1974), 277–280. Zbl0272.47017
 - [8] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Some new properties of composition operators associated to lensmaps, Israel J. Math. 195 (2) (2013), 801–824. Zbl1318.47039
 - [9] D. Li and H. Queffélec, Introduction à l’étude des espaces de Banach. Analyse et probabilités, Cours Spécialisés 12, Société Mathématique de France, Paris (2004).
 - [10] D. Li, H. Queffélec, L. Rodríguez-Piazza, On approximation numbers of composition operators, J. Approx. Theory 164 (4) (2012), 431–459. Zbl1246.47007
 - [11] D. Li, H. Queffélec, L. Rodríguez-Piazza, Estimates for approximation numbers of some classes of composition operators on the Hardy space, Ann. Acad. Sci. Fenn. Math. 38 (2013), 547–564. Zbl1295.47011
 - [12] D. Li, H. Queffélec, L. Rodríguez-Piazza, A spectral radius type formula for approximation numbers of composition operators, J. Funct. Anal., 267 (2014), no. 12, 4753–4774. Zbl1325.47045
 - [13] R. Mortini, Thin interpolating sequences in the disk, Arch. Math. 92, no. 5 (2009), 504–518. Zbl1179.30058
 - [14] N. Nikol’skiˇı, A treatise on the Shift Operator, Grundlehren der Math. 273, Springer-Verlag (1986).
 - [15] S. Petermichl, S. Treil, B.D. Wick, Carleson potentials and the reproducing kernel thesis for embedding theorems, Illinois J. Math. 51, no. 4 (2007), 1249–1263. Zbl1152.30036
 - [16] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. LI (1974), 201–223. Zbl0294.47018
 - [17] A. Plichko, Rate of decay of the Bernstein numbers, Zh. Mat. Fiz. Anal. Geom. 9, no. 1 (2013), 59–72. Zbl1294.47030
 - [18] H. Queffélec, K. Seip, Decay rates for approximation numbers of composition operators, J. Anal. Math., 125 (2015), no. 1, 371–399. Zbl1316.47022
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.