# A characterization of (γₜ,γ₂)-trees

You Lu; Xinmin Hou; Jun-Ming Xu; Ning Li

Discussiones Mathematicae Graph Theory (2010)

- Volume: 30, Issue: 3, page 425-435
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topYou Lu, et al. "A characterization of (γₜ,γ₂)-trees." Discussiones Mathematicae Graph Theory 30.3 (2010): 425-435. <http://eudml.org/doc/270837>.

@article{YouLu2010,

abstract = {Let γₜ(G) and γ₂(G) be the total domination number and the 2-domination number of a graph G, respectively. It has been shown that: γₜ(T) ≤ γ₂(T) for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.},

author = {You Lu, Xinmin Hou, Jun-Ming Xu, Ning Li},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {domination; total domination; 2-domination; (λ,μ)-tree; -tree},

language = {eng},

number = {3},

pages = {425-435},

title = {A characterization of (γₜ,γ₂)-trees},

url = {http://eudml.org/doc/270837},

volume = {30},

year = {2010},

}

TY - JOUR

AU - You Lu

AU - Xinmin Hou

AU - Jun-Ming Xu

AU - Ning Li

TI - A characterization of (γₜ,γ₂)-trees

JO - Discussiones Mathematicae Graph Theory

PY - 2010

VL - 30

IS - 3

SP - 425

EP - 435

AB - Let γₜ(G) and γ₂(G) be the total domination number and the 2-domination number of a graph G, respectively. It has been shown that: γₜ(T) ≤ γ₂(T) for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.

LA - eng

KW - domination; total domination; 2-domination; (λ,μ)-tree; -tree

UR - http://eudml.org/doc/270837

ER -

## References

top- [1] M. Blidia, M. Chellalia and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006) 1840-1845, doi: 10.1016/j.disc.2006.03.061. Zbl1100.05068
- [2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037, doi: 10.1016/j.disc.2006.04.010. Zbl1100.05069
- [3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. Zbl0447.05039
- [4] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterization of (γ,i)-trees, J. Graph Theory 34 (2000) 277-292, doi: 10.1002/1097-0118(200008)34:4<277::AID-JGT4>3.0.CO;2-# Zbl0949.05059
- [5] G. Chartrant and L. Lesniak, Graphs & Digraphs, third ed. (Chapman & Hall, London, 1996).
- [6] J.F. Fink and M.S. Jacobson, n-Domination in graphs, in: Y. Alavi, A.J. Schwenk (eds.), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300. Zbl0573.05049
- [7] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150. Zbl0647.05020
- [8] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and P.J. Slater, H-forming sets in graphs, Discrete Math. 262 (2003) 159-169, doi: 10.1016/S0012-365X(02)00496-X. Zbl1017.05082
- [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998). Zbl0890.05002
- [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998). Zbl0883.00011
- [11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong quality of domination parameters in trees, Discrete Math. 260 (2003) 77-87, doi: 10.1016/S0012-365X(02)00451-X. Zbl1020.05051
- [12] M.A. Henning, A survey of selected recently results on total domination in graphs, Discrete Math. 309 (2009) 32-63, doi: 10.1016/j.disc.2007.12.044.
- [13] X. Hou, A characterization of (2γ,γₚ)-trees, Discrete Math. 308 (2008) 3420-3426, doi: 10.1016/j.disc.2007.06.034. Zbl1165.05023

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.