A characterization of (γₜ,γ₂)-trees

You Lu; Xinmin Hou; Jun-Ming Xu; Ning Li

Discussiones Mathematicae Graph Theory (2010)

  • Volume: 30, Issue: 3, page 425-435
  • ISSN: 2083-5892

Abstract

top
Let γₜ(G) and γ₂(G) be the total domination number and the 2-domination number of a graph G, respectively. It has been shown that: γₜ(T) ≤ γ₂(T) for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.

How to cite

top

You Lu, et al. "A characterization of (γₜ,γ₂)-trees." Discussiones Mathematicae Graph Theory 30.3 (2010): 425-435. <http://eudml.org/doc/270837>.

@article{YouLu2010,
abstract = {Let γₜ(G) and γ₂(G) be the total domination number and the 2-domination number of a graph G, respectively. It has been shown that: γₜ(T) ≤ γ₂(T) for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.},
author = {You Lu, Xinmin Hou, Jun-Ming Xu, Ning Li},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {domination; total domination; 2-domination; (λ,μ)-tree; -tree},
language = {eng},
number = {3},
pages = {425-435},
title = {A characterization of (γₜ,γ₂)-trees},
url = {http://eudml.org/doc/270837},
volume = {30},
year = {2010},
}

TY - JOUR
AU - You Lu
AU - Xinmin Hou
AU - Jun-Ming Xu
AU - Ning Li
TI - A characterization of (γₜ,γ₂)-trees
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 3
SP - 425
EP - 435
AB - Let γₜ(G) and γ₂(G) be the total domination number and the 2-domination number of a graph G, respectively. It has been shown that: γₜ(T) ≤ γ₂(T) for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.
LA - eng
KW - domination; total domination; 2-domination; (λ,μ)-tree; -tree
UR - http://eudml.org/doc/270837
ER -

References

top
  1. [1] M. Blidia, M. Chellalia and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006) 1840-1845, doi: 10.1016/j.disc.2006.03.061. Zbl1100.05068
  2. [2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037, doi: 10.1016/j.disc.2006.04.010. Zbl1100.05069
  3. [3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. Zbl0447.05039
  4. [4] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterization of (γ,i)-trees, J. Graph Theory 34 (2000) 277-292, doi: 10.1002/1097-0118(200008)34:4<277::AID-JGT4>3.0.CO;2-# Zbl0949.05059
  5. [5] G. Chartrant and L. Lesniak, Graphs & Digraphs, third ed. (Chapman & Hall, London, 1996). 
  6. [6] J.F. Fink and M.S. Jacobson, n-Domination in graphs, in: Y. Alavi, A.J. Schwenk (eds.), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300. Zbl0573.05049
  7. [7] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150. Zbl0647.05020
  8. [8] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and P.J. Slater, H-forming sets in graphs, Discrete Math. 262 (2003) 159-169, doi: 10.1016/S0012-365X(02)00496-X. Zbl1017.05082
  9. [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998). Zbl0890.05002
  10. [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998). Zbl0883.00011
  11. [11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong quality of domination parameters in trees, Discrete Math. 260 (2003) 77-87, doi: 10.1016/S0012-365X(02)00451-X. Zbl1020.05051
  12. [12] M.A. Henning, A survey of selected recently results on total domination in graphs, Discrete Math. 309 (2009) 32-63, doi: 10.1016/j.disc.2007.12.044. 
  13. [13] X. Hou, A characterization of (2γ,γₚ)-trees, Discrete Math. 308 (2008) 3420-3426, doi: 10.1016/j.disc.2007.06.034. Zbl1165.05023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.