Cost-efficiency in multivariate Lévy models

Ludger Rüschendorf; Viktor Wolf

Dependence Modeling (2015)

  • Volume: 3, Issue: 1, page 1-16, electronic only
  • ISSN: 2300-2298

Abstract

top
In this paper we determine lowest cost strategies for given payoff distributions called cost-efficient strategies in multivariate exponential Lévy models where the pricing is based on the multivariate Esscher martingale measure. This multivariate framework allows to deal with dependent price processes as arising in typical applications. Dependence of the components of the Lévy Process implies an influence even on the pricing of efficient versions of univariate payoffs.We state various relevant existence and uniqueness results for the Esscher parameter and determine cost efficient strategies in particular in the case of price processes driven by multivariate NIG- and VG-processes. From a monotonicity characterization of efficient payoffs we obtain that basket options are generally inefficient in Lévy markets when pricing is based on the Esscher measure.We determine efficient versions of the basket options in real market data and show that the proposed cost efficient strategies are also feasible from a numerical viewpoint. As a result we find that a considerable efficiency loss may arise when using the inefficient payoffs.

How to cite

top

Ludger Rüschendorf, and Viktor Wolf. "Cost-efficiency in multivariate Lévy models." Dependence Modeling 3.1 (2015): 1-16, electronic only. <http://eudml.org/doc/270841>.

@article{LudgerRüschendorf2015,
abstract = {In this paper we determine lowest cost strategies for given payoff distributions called cost-efficient strategies in multivariate exponential Lévy models where the pricing is based on the multivariate Esscher martingale measure. This multivariate framework allows to deal with dependent price processes as arising in typical applications. Dependence of the components of the Lévy Process implies an influence even on the pricing of efficient versions of univariate payoffs.We state various relevant existence and uniqueness results for the Esscher parameter and determine cost efficient strategies in particular in the case of price processes driven by multivariate NIG- and VG-processes. From a monotonicity characterization of efficient payoffs we obtain that basket options are generally inefficient in Lévy markets when pricing is based on the Esscher measure.We determine efficient versions of the basket options in real market data and show that the proposed cost efficient strategies are also feasible from a numerical viewpoint. As a result we find that a considerable efficiency loss may arise when using the inefficient payoffs.},
author = {Ludger Rüschendorf, Viktor Wolf},
journal = {Dependence Modeling},
keywords = {cost-efficient strategies; multivariate Lévy models; multivariate Esscher transform; basket option},
language = {eng},
number = {1},
pages = {1-16, electronic only},
title = {Cost-efficiency in multivariate Lévy models},
url = {http://eudml.org/doc/270841},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Ludger Rüschendorf
AU - Viktor Wolf
TI - Cost-efficiency in multivariate Lévy models
JO - Dependence Modeling
PY - 2015
VL - 3
IS - 1
SP - 1
EP - 16, electronic only
AB - In this paper we determine lowest cost strategies for given payoff distributions called cost-efficient strategies in multivariate exponential Lévy models where the pricing is based on the multivariate Esscher martingale measure. This multivariate framework allows to deal with dependent price processes as arising in typical applications. Dependence of the components of the Lévy Process implies an influence even on the pricing of efficient versions of univariate payoffs.We state various relevant existence and uniqueness results for the Esscher parameter and determine cost efficient strategies in particular in the case of price processes driven by multivariate NIG- and VG-processes. From a monotonicity characterization of efficient payoffs we obtain that basket options are generally inefficient in Lévy markets when pricing is based on the Esscher measure.We determine efficient versions of the basket options in real market data and show that the proposed cost efficient strategies are also feasible from a numerical viewpoint. As a result we find that a considerable efficiency loss may arise when using the inefficient payoffs.
LA - eng
KW - cost-efficient strategies; multivariate Lévy models; multivariate Esscher transform; basket option
UR - http://eudml.org/doc/270841
ER -

References

top
  1.  
  2. [1] O. E. Barndorff-Nielsen (1977). Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc. London Ser. A, 353(1674), 401–419. 
  3. [2] O. E. Barndorff-Nielsen, J. Kent, and M. Sørensen (1982). Normal variance mean-mixtures and z-distributions. Internat. Statist. Rev., 50(2), 145–159. [Crossref] Zbl0497.62019
  4. [3] C. Bernard, P. P. Boyle, and S. Vanduffel (2014). Explicit representation of cost-efficient strategies. Finance, 35(2), 5–55. 
  5. [4] C. Bernard, F. Moraux, L. Rüschendorf, and S. Vanduffel (2015). Optimal payoffs under state-dependent preferences. To appear in Quant. Finance, DOI:10.1080/14697688.2014.981576. [WoS][Crossref] 
  6. [5] C. Bernard, L. Rüschendorf, and S. Vanduffel (2014). Optimal claims with fixed payoff structure. J. Appl. Probab., 51A, 175–188. [Crossref] Zbl1331.91156
  7. [6] P. Blæsild (1981). The two-dimensional hyperbolic distribution and related distributions, with an application to Johannsen’s bean data. Biometrika, 68(1), 251–263. [Crossref] Zbl0463.62048
  8. [7] C. Burgert and L. Rüschendorf (2006). On the optimal risk allocation problem. Statistics & Decisions, 24(1), 153–171. Zbl1186.91117
  9. [8] T. Chan (1999). Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Probab., 9(2), 504–528. [Crossref] Zbl1054.91033
  10. [9] J. E. Jr. Dennis and R. B. Schnabel (1996). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia. 
  11. [10] P. Dybvig (1988a). Distributional analysis of portfolio choice. J. Business, 61(3), 369–393. [Crossref] 
  12. [11] P. Dybvig (1988b). Inefficient dynamic portfolio strategies or how to throw away a million dollars in the stock market. Rev. Financ. Stud., 1(1), 67–88. [Crossref] 
  13. [12] E. Eberlein and U. Keller (1995). Hyperbolic distributions in finance. Bernoulli, 1(3), 281–299. [Crossref] Zbl0836.62107
  14. [13] E. Eberlein, A. Papapantoleon and A. N. Shiryaev (2009). Esscher transform and the duality principle for multidimensional semimartingales. Ann. Appl. Probab., 19(5), 1944–1971. [Crossref][WoS] Zbl1233.91268
  15. [14] F. Esche and M. Schweizer (2005). Minimal entropy preserves the Lévy property: How and why. Stochastic Process. Appl., 115(2), 299–327. Zbl1075.60049
  16. [15] H. Föllmer and A. Schied (2004). Stochastic Finance. An Introduction in Discrete Time. 2nd revised and extended edition, de Gruyter, Berlin. Zbl1126.91028
  17. [16] H. U. Gerber and E. S. W. Shiu (1994). Option pricing by Esscher transforms. T. Soc. Actuaries, 46, 99–191. 
  18. [17] T. Goll and J. Kallsen (2000). Optimal portfolios for logarithmic utility. Stochastic Process. Appl., 89(1), 31–48. Zbl1048.91064
  19. [18] T. Goll and L. Rüschendorf (2001). Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch., 5(4), 557–581. Zbl0997.91022
  20. [19] E. A. v. Hammerstein (2010). Generalized Hyperbolic Distributions: Theory and Application to CDO Pricing. PhD thesis, University of Freiburg i. Br. 
  21. [20] E. A. v. Hammerstein, E. Lütkebohmert, L. Rüschendorf, and V. Wolf (2014). Optimality of payoffs in Lévy models. Appl. Finance, 17(6), 1-46. Zbl1298.91172
  22. [21] F. Hubalek and C. Sgarra (2006). Comparisons of dependence for stationary Markov processes. Quant. Finance, 6(2), 125–145. [Crossref] 
  23. [22] E. Jouini and H. Kallal (2001). Efficient trading strategies in the presence of market frictions. Rev. Financ. Stud., 14(2), 343–369. [Crossref] 
  24. [23] J. Kallsen and A. N. Shiryaev (2002). The cumulant process and Esscher’s change of measure. Finance Stoch., 6(4), 397–428. Zbl1035.60042
  25. [24] E. Luciano and P. Semeraro (2010). A generalized normal mean-variance mixture for return processes in finance. Int. J. Theor. Appl. Finance, 13(3), 415–440. [Crossref] Zbl1196.91065
  26. [25] D. B. Madan and F. Milne (1991). Option pricing with VG martingale components. Math. Finance, 1(4), 39–55. [Crossref] Zbl0900.90105
  27. [26] T. Mäkeläinen, K. Schmidt, and G. P. H. Styan (1981). On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples. Ann. Statist., 9(4), 758–767. [Crossref] Zbl0473.62004
  28. [27] S. Raible (2000). Lévy processes in Finance: Theory, Numerics, and Empirical Facts. PhD thesis, University of Freiburg i. Br.. Zbl0966.60044
  29. [28] L. Rüschendorf and V. Wolf (2014). On the method of optimal portfolio choice by cost-efficiency. Preprint. 
  30. [29] K.-I. Sato (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge. Zbl0973.60001
  31. [30] A. Takahashi and K. Yamamoto (2013). Generating a target payoff distribution with the cheapest dynamic portfolio: An application to hedge fund replication. Quant. Finance, 13(10), 1559–1573. [Crossref][WoS] Zbl1284.91532
  32. [31] P. Tankov (2010). Financial Modeling with Lévy Processes. Lecture Notes. 
  33. [32] S. Vanduffel, A. Chernih, M. Maj, and W. Schoutens (2009). A note on the suboptimality of path-dependent payoffs in Lévy markets. Appl. Math. Finance, 16(4), 315–330. [Crossref] Zbl1179.91085
  34. [33] S. Vanduffel, A. Ahcan, L. Henrard, and M. Maj (2012). An explicit option-based strategy that outperforms Dollar cost averaging. Int. J. Theor. Appl. Finance, 15(2), 1250013. [Crossref] Zbl1282.91349
  35. [34] H. Witting (1985). Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang. B. G. Teubner, Stuttgart.. Zbl0581.62001
  36. [35] V. Wolf (2014). Comparison of Markovian Price Processes and Optimality of Payoffs. PhD thesis, University of Freiburg i. Br.. Zbl1311.60006
  37. [36] L. Yao, G. Yang, and X. Yang (2011). A note the mean correction martingale measure for geometric Lévy processes. Appl. Math. Lett., 24(5), 593–597. [WoS][Crossref] Zbl1210.91139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.