On locating-domination in graphs

Mustapha Chellali; Malika Mimouni; Peter J. Slater

Discussiones Mathematicae Graph Theory (2010)

  • Volume: 30, Issue: 2, page 223-235
  • ISSN: 2083-5892

Abstract

top
A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number γ L ( G ) is the minimum cardinality of a LDS of G, and the upper locating-domination number, Γ L ( G ) is the maximum cardinality of a minimal LDS of G. We present different bounds on Γ L ( G ) and γ L ( G ) .

How to cite

top

Mustapha Chellali, Malika Mimouni, and Peter J. Slater. "On locating-domination in graphs." Discussiones Mathematicae Graph Theory 30.2 (2010): 223-235. <http://eudml.org/doc/270845>.

@article{MustaphaChellali2010,
abstract = {A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number $γ_L(G)$ is the minimum cardinality of a LDS of G, and the upper locating-domination number, $Γ_L(G)$ is the maximum cardinality of a minimal LDS of G. We present different bounds on $Γ_L(G)$ and $γ_L(G)$.},
author = {Mustapha Chellali, Malika Mimouni, Peter J. Slater},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {upper locating-domination number; locating-domination number},
language = {eng},
number = {2},
pages = {223-235},
title = {On locating-domination in graphs},
url = {http://eudml.org/doc/270845},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Mustapha Chellali
AU - Malika Mimouni
AU - Peter J. Slater
TI - On locating-domination in graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 2
SP - 223
EP - 235
AB - A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number $γ_L(G)$ is the minimum cardinality of a LDS of G, and the upper locating-domination number, $Γ_L(G)$ is the maximum cardinality of a minimal LDS of G. We present different bounds on $Γ_L(G)$ and $γ_L(G)$.
LA - eng
KW - upper locating-domination number; locating-domination number
UR - http://eudml.org/doc/270845
ER -

References

top
  1. [1] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Australasian J. Combin. 33 (2005) 317-327. Zbl1081.05081
  2. [2] M. Blidia, M. Chellali, O. Favaron and N. Meddah, On k-independence in graphs with emphasis on trees, Discrete Math. 307 (2007) 2209-2216, doi: 10.1016/j.disc.2006.11.007. Zbl1123.05066
  3. [3] M. Blidia, M. Chellali, R. Lounes and F. Maffray, Characterizations of trees with unique minimum locating-dominating sets, submitted. Zbl1244.05164
  4. [4] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees, Australasian J. Combin. 39 (2007) 219-232. Zbl1136.05049
  5. [5] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees, Australasian J. Combin. 42 (2008) 309-316. Zbl1153.05039
  6. [6] M. Farber, Domination, independent domination and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984) 115-130, doi: 10.1016/0166-218X(84)90061-1. Zbl0531.05045
  7. [7] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079. Zbl0602.05043
  8. [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). Zbl0890.05002
  9. [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). Zbl0883.00011
  10. [10] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104. Zbl0489.05049
  11. [11] G. Ravindra, Well covered graphs, J. Combin. Inform. System. Sci. 2 (1977) 20-21. Zbl0396.05007
  12. [12] P.J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55-64, doi: 10.1002/net.3230170105. Zbl0643.90089
  13. [13] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455. Zbl0656.05057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.