On locating-domination in graphs
Mustapha Chellali; Malika Mimouni; Peter J. Slater
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 2, page 223-235
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMustapha Chellali, Malika Mimouni, and Peter J. Slater. "On locating-domination in graphs." Discussiones Mathematicae Graph Theory 30.2 (2010): 223-235. <http://eudml.org/doc/270845>.
@article{MustaphaChellali2010,
abstract = {A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number $γ_L(G)$ is the minimum cardinality of a LDS of G, and the upper locating-domination number, $Γ_L(G)$ is the maximum cardinality of a minimal LDS of G. We present different bounds on $Γ_L(G)$ and $γ_L(G)$.},
author = {Mustapha Chellali, Malika Mimouni, Peter J. Slater},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {upper locating-domination number; locating-domination number},
language = {eng},
number = {2},
pages = {223-235},
title = {On locating-domination in graphs},
url = {http://eudml.org/doc/270845},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Mustapha Chellali
AU - Malika Mimouni
AU - Peter J. Slater
TI - On locating-domination in graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 2
SP - 223
EP - 235
AB - A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number $γ_L(G)$ is the minimum cardinality of a LDS of G, and the upper locating-domination number, $Γ_L(G)$ is the maximum cardinality of a minimal LDS of G. We present different bounds on $Γ_L(G)$ and $γ_L(G)$.
LA - eng
KW - upper locating-domination number; locating-domination number
UR - http://eudml.org/doc/270845
ER -
References
top- [1] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Australasian J. Combin. 33 (2005) 317-327. Zbl1081.05081
- [2] M. Blidia, M. Chellali, O. Favaron and N. Meddah, On k-independence in graphs with emphasis on trees, Discrete Math. 307 (2007) 2209-2216, doi: 10.1016/j.disc.2006.11.007. Zbl1123.05066
- [3] M. Blidia, M. Chellali, R. Lounes and F. Maffray, Characterizations of trees with unique minimum locating-dominating sets, submitted. Zbl1244.05164
- [4] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees, Australasian J. Combin. 39 (2007) 219-232. Zbl1136.05049
- [5] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees, Australasian J. Combin. 42 (2008) 309-316. Zbl1153.05039
- [6] M. Farber, Domination, independent domination and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984) 115-130, doi: 10.1016/0166-218X(84)90061-1. Zbl0531.05045
- [7] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079. Zbl0602.05043
- [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). Zbl0890.05002
- [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). Zbl0883.00011
- [10] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104. Zbl0489.05049
- [11] G. Ravindra, Well covered graphs, J. Combin. Inform. System. Sci. 2 (1977) 20-21. Zbl0396.05007
- [12] P.J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55-64, doi: 10.1002/net.3230170105. Zbl0643.90089
- [13] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455. Zbl0656.05057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.