On Entropy Bumps for Calderón-Zygmund Operators

Michael T. Lacey; Scott Spencer

Concrete Operators (2015)

  • Volume: 2, Issue: 1, page 47-52, electronic only
  • ISSN: 2299-3282

Abstract

top
We study twoweight inequalities in the recent innovative language of ‘entropy’ due to Treil-Volberg. The inequalities are extended to Lp, for 1 < p ≠ 2 < ∞, with new short proofs. A result proved is as follows. Let ℇ be a monotonic increasing function on (1,∞) which satisfy [...] Let σ and w be two weights on Rd. If this supremum is finite, for a choice of 1 < p < ∞, [...] then any Calderón-Zygmund operator T satisfies the bound [...]

How to cite

top

Michael T. Lacey, and Scott Spencer. "On Entropy Bumps for Calderón-Zygmund Operators." Concrete Operators 2.1 (2015): 47-52, electronic only. <http://eudml.org/doc/270848>.

@article{MichaelT2015,
abstract = {We study twoweight inequalities in the recent innovative language of ‘entropy’ due to Treil-Volberg. The inequalities are extended to Lp, for 1 < p ≠ 2 < ∞, with new short proofs. A result proved is as follows. Let ℇ be a monotonic increasing function on (1,∞) which satisfy [...] Let σ and w be two weights on Rd. If this supremum is finite, for a choice of 1 < p < ∞, [...] then any Calderón-Zygmund operator T satisfies the bound [...]},
author = {Michael T. Lacey, Scott Spencer},
journal = {Concrete Operators},
keywords = {weighted inequality; Ap; bumps; entropy; Calderón-Zygmund operators; entropy-bound method; weighted inequalities; -weights; maximal operator},
language = {eng},
number = {1},
pages = {47-52, electronic only},
title = {On Entropy Bumps for Calderón-Zygmund Operators},
url = {http://eudml.org/doc/270848},
volume = {2},
year = {2015},
}

TY - JOUR
AU - Michael T. Lacey
AU - Scott Spencer
TI - On Entropy Bumps for Calderón-Zygmund Operators
JO - Concrete Operators
PY - 2015
VL - 2
IS - 1
SP - 47
EP - 52, electronic only
AB - We study twoweight inequalities in the recent innovative language of ‘entropy’ due to Treil-Volberg. The inequalities are extended to Lp, for 1 < p ≠ 2 < ∞, with new short proofs. A result proved is as follows. Let ℇ be a monotonic increasing function on (1,∞) which satisfy [...] Let σ and w be two weights on Rd. If this supremum is finite, for a choice of 1 < p < ∞, [...] then any Calderón-Zygmund operator T satisfies the bound [...]
LA - eng
KW - weighted inequality; Ap; bumps; entropy; Calderón-Zygmund operators; entropy-bound method; weighted inequalities; -weights; maximal operator
UR - http://eudml.org/doc/270848
ER -

References

top
  1. [1] Cruz-Uribe, D., Pérez, C., Two-weight, weak-type norm inequalities for fractional integrals, Calderón-Zygmund operators and commutators. Indiana Univ. Math. J., 49, 2000, no. 2, 697–721. DOI:10.1512/iumj.2000.49.1795 Zbl1033.42009
  2. [2] Cruz-Uribe, David, Reznikov, Alexander, Volberg, Alexander, Logarithmic bumpconditions and the two-weight boundedness of Calderón–Zygmund operators. Adv. Math., 255, 2014, 706–729. DOI:10.1016/j.aim.2014.01.016 Zbl1290.42033
  3. [3] Ding, Shusen, Two-weight Caccioppoli inequalities for solutions of nonhomogeneous A-harmonic equations on Riemannian manifolds. Proc. Amer. Math. Soc., 132, 2004, no. 8, 2367–2375. DOI:10.1090/S0002-9939-04-07347-2 Zbl1127.35021
  4. [4] Hunt, Richard, Muckenhoupt, Benjamin, Wheeden, Richard, Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc., 176, 1973, 227–251. Zbl0262.44004
  5. [5] Hytönen, Tuomas P., The A2 theorem: remarks and complements. Contemp. Math., 612, Amer. Math. Soc., Providence, RI, 2014, 91–106. DOI:10.1090/conm/612/12226 
  6. [6] Lacey, Michael T., On the Separated Bumps Conjecture for Calderon-Zygmund Operators . HokkaidoMath J, to appear, 2013, 1310.3507 
  7. [7] Lacey, Michael T., An elementary proof of the A2 Bound. 2015, 1501.05818 
  8. [8] Hytönen, Tuomas P., Lacey, Michael T., Martikainen, Henri, Orponen, Tuomas, Reguera, Maria Carmen, Sawyer, Eric T., Uriarte-Tuero, Ignacio, Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on Ap weighted spaces. J. Anal. Math., 118, 2012, no. 1, 177–220. DOI:10.1007/s11854-012-0033-3 Zbl1278.42025
  9. [9] Hytönen, Tuomas P., Lacey, Michael T., The Ap-A1 inequality for general Calderón-Zygmund operators. Indiana Univ. Math. J., 61, 2012, no. 6, 2041–2092. DOI:10.1512/iumj.2012.61.4777 Zbl1290.42037
  10. [10] Hytönen, Tuomas, Pérez, Carlos, Sharp weighted bounds involving A1. Anal. PDE, 6, 2013, no. 4, 777–818. DOI:10.2140/apde.2013.6.777 Zbl1283.42032
  11. [11] Hytönen, Tuomas, Pérez, Carlos, Treil, Sergei, Volberg, Alexander, Sharp weighted estimates for dyadic shifts and the A2 conjecture. J. Reine Angew. Math., 687, 2014, 43–86. DOI:10.1515/crelle-2012-0047 Zbl1311.42037
  12. [12] Lacey, Michael T., An Ap-A1 inequality for the Hilbert transform. Houston J. Math., 38, 2012, no. 3, 799–814. Zbl1266.42034
  13. [13] Lacey, Michael T., Petermichl, Stefanie, Reguera, Maria Carmen, Sharp A2 inequality for Haar shift operators. Math. Ann., 348, 2010, no. 1, 127–141. DOI:10.1007/s00208-009-0473-y Zbl1210.42017
  14. [14] Lacey, Michael T., Sawyer, Eric T., Uriarte-Tuero, Ignacio, Two Weight Inequalities for Discrete Positive Operators. 2009, Submitted, 0911.3437 
  15. [15] Lerner, Andrei K., On an estimate of Calderón-Zygmund operators by dyadic positive operators. J. Anal. Math., 121, 2013, 141–161. DOI:10.1007/s11854-013-0030-1 Zbl1285.42015
  16. [16] Lerner, Andrei K., A simple proof of the A2 conjecture. Int. Math. Res. Not. IMRN, 2013, no. 14, 3159–3170. Zbl1318.42018
  17. [17] Lerner, Andrei K., Mixed Ap-Ar inequalities for classical singular integrals and Littlewood-Paley operators. J. Geom. Anal., 23, 2013, no. 3, 1343–1354. DOI:10.1007/s12220-011-9290-0 Zbl1278.42017
  18. [18] Lerner, Andrei K., Moen, Kabe, Mixed Ap-A1 estimates with one supremum. Studia Math., 219, 2013, no. 3, 247–267. DOI:10.4064/sm219-3-5 Zbl1317.42015
  19. [19] Muckenhoupt, Benjamin, Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165, 1972, 207–226. Zbl0236.26016
  20. [20] Nazarov, Fedor, Reznikov, Alexander, Treil, Sergei, Volberg, ALexander, A Bellman function proof of the L2 bump conjecture. J. Anal. Math., 121, 2013, 255–277. DOI:10.1007/s11854-013-0035-9 Zbl1284.42037
  21. [21] Neugebauer, C. J., title=Inserting Ap-weights, Proc. Amer. Math. Soc., 87, 1983, no. 4, 644–648. DOI:10.2307/2043351 
  22. [22] Pérez, C., Weighted norm inequalities for singular integral operators. J. London Math. Soc. (2), 49, 1994, no. 2, 296–308. DOI:10.1112/jlms/49.2.296 Zbl0797.42010
  23. [23] Sawyer, Eric T., A characterization of a two-weight norm inequality for maximal operators. Studia Math., 75, 1982, no. 1, 1–11. Zbl0508.42023
  24. [24] Sawyer, Eric T., A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans. Amer. Math. Soc., 308, 1988, no. 2, 533–545. DOI:10.2307/2001090 
  25. [25] Treil, Sergei, Volberg, Alexander, Entropy conditions in two weight inequalities for singular integral operators. 1408.0385 2014, 
  26. [26] Zheng, Dechao, The distribution function inequality and products of Toeplitz operators and Hankel operators. J. Funct. Anal., 138, 1996, no. 2, 477–501. DOI:10.1006/jfan.1996.0073 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.