The signless Laplacian spectral radius of graphs with given number of cut vertices
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 1, page 85-93
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topLin Cui, and Yi-Zheng Fan. "The signless Laplacian spectral radius of graphs with given number of cut vertices." Discussiones Mathematicae Graph Theory 30.1 (2010): 85-93. <http://eudml.org/doc/270860>.
@article{LinCui2010,
abstract = {In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.},
author = {Lin Cui, Yi-Zheng Fan},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graph; cut vertex; signless Laplacian matrix; spectral radius},
language = {eng},
number = {1},
pages = {85-93},
title = {The signless Laplacian spectral radius of graphs with given number of cut vertices},
url = {http://eudml.org/doc/270860},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Lin Cui
AU - Yi-Zheng Fan
TI - The signless Laplacian spectral radius of graphs with given number of cut vertices
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 1
SP - 85
EP - 93
AB - In this paper, we determine the graph with maximal signless Laplacian spectral radius among all connected graphs with fixed order and given number of cut vertices.
LA - eng
KW - graph; cut vertex; signless Laplacian matrix; spectral radius
UR - http://eudml.org/doc/270860
ER -
References
top- [1] W.N. Anderson and T.D. Morely, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141-145, doi: 10.1080/03081088508817681.
- [2] A. Berman and X.-D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory (B) 83 (2001) 233-240, doi: 10.1006/jctb.2001.2052. Zbl1023.05098
- [3] D. Cvetković, M. Doob and H. Sachs, Spectra of graphs, (third ed., Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995).
- [4] D. Cvetković, Signless Laplacians and line graphs, Bull. Acad. Serbe Sci. Ars. Cl. Sci. Math. Nat. Sci. Math. 131 (30) (2005) 85-92. Zbl1119.05066
- [5] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171, doi: 10.1016/j.laa.2007.01.009. Zbl1113.05061
- [6] E.R. van Dam and W. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373 (2003) 241-272, doi: 10.1016/S0024-3795(03)00483-X. Zbl1026.05079
- [7] M. Desai and V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory 18 (1994) 181-194, doi: 10.1002/jgt.3190180210. Zbl0792.05096
- [8] Y.-Z. Fan, B.-S. Tam and J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of a given order, Linear Multilinear Algebra 56 (2008) 381-397, doi: 10.1080/03081080701306589. Zbl1146.05032
- [9] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.
- [10] R. Grone and R. Merris, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016. Zbl0733.05060
- [11] J.W. Grossman, D.M. Kulkarni and I. Schochetman, Algebraic graph theory without orientation, Linear Algebra Appl. 212/213 (1994) 289-307, doi: 10.1016/0024-3795(94)90407-3. Zbl0817.05047
- [12] W. Haemer and E. Spence, Enumeration of cospectral graphs, Europ. J. Combin. 25 (2004) 199-211, doi: 10.1016/S0195-6698(03)00100-8. Zbl1033.05070
- [13] Q. Li and K.-Q. Feng, On the largest eigenvalues of graphs, (in Chinese), Acta Math. Appl. Sin. 2 (1979) 167-175.
- [14] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3. Zbl0802.05053
- [15] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry (G. Hahn and G. Sabidussi Eds), (Kluwer Academic Publishers, Dordrecht, 1997), 225-275. Zbl0883.05096
- [16] B.-S. Tam, Y.-Z. Fan and J. Zhou, Unoriented Laplacian maximizing graphs are degree maximal, Linear Algebra Appl. 429 (2008) 735-758, doi: 10.1016/j.laa.2008.04.002. Zbl1149.05034
- [17] Shangwang Tan and Xingke Wang, On the largest eigenvalue of signless Laplacian matrix of a graph, Journal of Mathematical Reserch and Exposion 29 (2009) 381-390. Zbl1212.05164
- [18] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 362 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. Zbl1017.05078
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.