Graphs for n-circular matroids
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 3, page 437-447
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topRenata Kawa. "Graphs for n-circular matroids." Discussiones Mathematicae Graph Theory 30.3 (2010): 437-447. <http://eudml.org/doc/270861>.
@article{RenataKawa2010,
	abstract = {We give "if and only if" characterization of graphs with the following property: given n ≥ 3, edges of such graphs form matroids with circuits from the collection of all graphs with n fundamental cycles. In this way we refer to the notion of matroidal family defined by Simões-Pereira [2].},
	author = {Renata Kawa},
	journal = {Discussiones Mathematicae Graph Theory},
	keywords = {matroid; matroidal family},
	language = {eng},
	number = {3},
	pages = {437-447},
	title = {Graphs for n-circular matroids},
	url = {http://eudml.org/doc/270861},
	volume = {30},
	year = {2010},
}
TY  - JOUR
AU  - Renata Kawa
TI  - Graphs for n-circular matroids
JO  - Discussiones Mathematicae Graph Theory
PY  - 2010
VL  - 30
IS  - 3
SP  - 437
EP  - 447
AB  - We give "if and only if" characterization of graphs with the following property: given n ≥ 3, edges of such graphs form matroids with circuits from the collection of all graphs with n fundamental cycles. In this way we refer to the notion of matroidal family defined by Simões-Pereira [2].
LA  - eng
KW  - matroid; matroidal family
UR  - http://eudml.org/doc/270861
ER  - 
References
top- [1] H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935) 509-533, doi: 10.2307/2371182. Zbl0012.00404
- [2] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits II, Discrete Math. 12 (1975) 55-78, doi: 10.1016/0012-365X(75)90095-3. Zbl0307.05129
- [3] J.M.S. Simões-Pereira, Matroidal Families of Graphs, in: N. White (ed.) Matroid Applications (Cambridge University Press, 1992), doi: 10.1017/CBO9780511662041.005. Zbl0768.05024
- [4] J.G. Oxley, Matroid Theory (Oxford University Press, 1992).
- [5] L.R. Matthews, Bicircular matroids, Quart. J. Math. Oxford 28 (1977) 213-228, doi: 10.1093/qmath/28.2.213.
- [6] T. Andreae, Matroidal families of finite connected nonhomeomorphic graphs exist, J. Graph Theory 2 (1978) 149-153, doi: 10.1002/jgt.3190020208. Zbl0347.05119
- [7] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93-97, doi: 10.1016/0012-365X(79)90072-4. Zbl0427.05024
- [8] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004). Zbl1036.05001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 