A conjecture on the prevalence of cubic bridge graphs
Jerzy A. Filar; Michael Haythorpe; Giang T. Nguyen
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 1, page 175-179
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Bollobas, Random Graphs (Cambridge University Press, 2001), doi: 10.1017/CBO9780511814068. Zbl0979.05003
- [2] V. Ejov, J.A. Filar S.K. Lucas and P. Zograf, Clustering of spectra and fractals of regular graphs, J. Math. Anal. and Appl. 333 (2007) 236-246, doi: 10.1016/j.jmaa.2006.09.072. Zbl1118.05062
- [3] V. Ejov, S. Friedland and G.T. Nguyen, A note on the graph's resolvent and the multifilar structure, Linear Algebra and Its Application 431 (2009) 1367-1379, doi: 10.1016/j.laa.2009.05.019. Zbl1203.05091
- [4] A.S. Lague, Les reseaux (ou graphes), Memorial des sciences math. 18 (1926).
- [5] B.D. McKay, website for nauty: http://cs.anu.edu.au/ bdm/nauty/.
- [6] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Ttheory 30 (1999) 137-146, doi: 10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G Zbl0918.05062
- [7] G.T. Nguyen, Hamiltonian cycle problem, Markov decision processes and graph spectra, PhD Thesis (University of South Australia, 2009).
- [8] R. Robinson and N. Wormald, Almost all regular graphs are Hamiltonian, Random Structures and Algorithms 5 (1994) 363-374, doi: 10.1002/rsa.3240050209. Zbl0795.05088