On kaleidoscopic pseudo-randomness of finite Euclidean graphs

Le Anh Vinh

Discussiones Mathematicae Graph Theory (2012)

  • Volume: 32, Issue: 2, page 279-287
  • ISSN: 2083-5892

Abstract

top
D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero (2008) showed that the distance graphs has kaleidoscopic pseudo-random property, i.e. sufficiently large subsets of d-dimensional vector spaces over finite fields contain every possible finite configurations. In this paper we study the kaleidoscopic pseudo-randomness of finite Euclidean graphs using probabilistic methods.

How to cite

top

Le Anh Vinh. "On kaleidoscopic pseudo-randomness of finite Euclidean graphs." Discussiones Mathematicae Graph Theory 32.2 (2012): 279-287. <http://eudml.org/doc/270881>.

@article{LeAnhVinh2012,
abstract = {D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero (2008) showed that the distance graphs has kaleidoscopic pseudo-random property, i.e. sufficiently large subsets of d-dimensional vector spaces over finite fields contain every possible finite configurations. In this paper we study the kaleidoscopic pseudo-randomness of finite Euclidean graphs using probabilistic methods.},
author = {Le Anh Vinh},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {finite Euclidean graphs; kaleidoscopic pseudo-randomness},
language = {eng},
number = {2},
pages = {279-287},
title = {On kaleidoscopic pseudo-randomness of finite Euclidean graphs},
url = {http://eudml.org/doc/270881},
volume = {32},
year = {2012},
}

TY - JOUR
AU - Le Anh Vinh
TI - On kaleidoscopic pseudo-randomness of finite Euclidean graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 2
SP - 279
EP - 287
AB - D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero (2008) showed that the distance graphs has kaleidoscopic pseudo-random property, i.e. sufficiently large subsets of d-dimensional vector spaces over finite fields contain every possible finite configurations. In this paper we study the kaleidoscopic pseudo-randomness of finite Euclidean graphs using probabilistic methods.
LA - eng
KW - finite Euclidean graphs; kaleidoscopic pseudo-randomness
UR - http://eudml.org/doc/270881
ER -

References

top
  1. [1] N. Alon and J.H. Spencer, The Probabilistic Method (Willey-Interscience, 2000). Zbl0996.05001
  2. [2] E. Bannai, O. Shimabukuro and H. Tanaka, Finite Euclidean graphs and Ramanujan graphs, Discrete Math. 309 (2009) 6126-6134, doi: 10.1016/j.disc.2009.06.008. Zbl1208.05046
  3. [3] D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero, Distance graphs in vector spaces over finite fields, coloring and pseudo-randomness preprint, arXiv:0804.3036v1. 
  4. [4] A. Iosevich and M. Rudnev, Erdös distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007) 6127-6142, doi: 10.1090/S0002-9947-07-04265-1. Zbl1145.11083
  5. [5] M. Krivelevich and B. Sudakov, Pseudo-random graphs, in: Conference on Finite and Infinite Sets Budapest, Bolyai Society Mathematical Studies X, (Springer, Berlin 2006) 1-64. 
  6. [6] S. Li and L.A. Vinh, On the spectrum of unitary finite-Euclidean graphs, Ars Combinatoria, to appear. 
  7. [7] A. Medrano, P. Myers, H.M. Stark and A. Terras, Finite analogues of Euclidean space, Journal of Computational and Applied Mathematics 68 ( 1996) 221-238, doi: 10.1016/0377-0427(95)00261-8. Zbl0874.05030
  8. [8] L.A. Vinh and D.P. Dung, Explicit tough Ramsey graphs, in: Proceedings of the International Conference on Relations, Orders and Graphs: Interaction with Computer Science, ( Nouha Editions, 2008) 139-146. 
  9. [9] L.A. Vinh, Explicit Ramsey graphs and Erdös distance problem over finite Euclidean and non-Euclidean spaces, Electronic J. Combin. 15 (2008) R5. Zbl1206.05054
  10. [10] L.A. Vinh, Szemeredi-Trotter type theorem and sum-product estimate in finite fields, European J. Combin., to appear. Zbl1253.11015
  11. [11] V. Vu, Sum-product estimates via directed expanders, Mathematical Research Letters, 15 (2008) 375-388. Zbl1214.11021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.