# Total vertex irregularity strength of disjoint union of Helm graphs

Ali Ahmad; E.T. Baskoro; M. Imran

Discussiones Mathematicae Graph Theory (2012)

- Volume: 32, Issue: 3, page 427-434
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topAli Ahmad, E.T. Baskoro, and M. Imran. "Total vertex irregularity strength of disjoint union of Helm graphs." Discussiones Mathematicae Graph Theory 32.3 (2012): 427-434. <http://eudml.org/doc/270908>.

@article{AliAhmad2012,

abstract = {A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set \{1,2,...,k\} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined an exact value of the total vertex irregularity strength of disjoint union of Helm graphs.},

author = {Ali Ahmad, E.T. Baskoro, M. Imran},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {vertex irregular total k-labeling; Helm graphs; total vertex irregularity strength; vertex irregular total -labeling; total vertex irregularity},

language = {eng},

number = {3},

pages = {427-434},

title = {Total vertex irregularity strength of disjoint union of Helm graphs},

url = {http://eudml.org/doc/270908},

volume = {32},

year = {2012},

}

TY - JOUR

AU - Ali Ahmad

AU - E.T. Baskoro

AU - M. Imran

TI - Total vertex irregularity strength of disjoint union of Helm graphs

JO - Discussiones Mathematicae Graph Theory

PY - 2012

VL - 32

IS - 3

SP - 427

EP - 434

AB - A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1,2,...,k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined an exact value of the total vertex irregularity strength of disjoint union of Helm graphs.

LA - eng

KW - vertex irregular total k-labeling; Helm graphs; total vertex irregularity strength; vertex irregular total -labeling; total vertex irregularity

UR - http://eudml.org/doc/270908

ER -

## References

top- [1] A. Ahmad and M. Bača, On vertex irregular total labelings, Ars Combin. (to appear). Zbl1313.05314
- [2] A. Ahmad, K.M. Awan, I. Javaid, and Slamin, Total vertex irregularity strength of wheel related graphs, Australas. J. Combin. 51 (2011) 147-156. Zbl1233.05170
- [3] M. Anholcer, M. Kalkowski and J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009) 6316-6317, doi: 10.1016/j.disc.2009.05.023. Zbl1210.05117
- [4] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388, doi: 10.1016/j.disc.2005.11.075. Zbl1115.05079
- [5] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241-254, doi: 10.1002/jgt.10158. Zbl1034.05015
- [6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
- [7] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schlep, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math. 76 (1988) 223-240, doi: 10.1016/0012-365X(89)90321-X. Zbl0685.05029
- [8] A. Frieze, R.J. Gould, M. Karoński, and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120-137, doi: 10.1002/jgt.10056. Zbl1016.05045
- [9] A. Gyárfás, The irregularity strength of ${K}_{m,m}$ is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9. Zbl0681.05066
- [10] S. Jendrol', M. Tkáč and Zs. Tuza, The irregularity strength and cost of the union of cliques, Discrete Math. 150 (1996) 179-186, doi: 10.1016/0012-365X(95)00186-Z. Zbl0852.05054
- [11] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 139-1321, doi: 10.1137/090774112. Zbl1237.05183
- [12] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313-323, doi: 10.1137/S0895480196314291. Zbl0947.05067
- [13] Nurdin, E.T. Baskoro, A.N.M. Salamn and N.N. Goas, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041. Zbl1208.05014
- [14] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009) 511-516, doi: 10.1137/070707385. Zbl1216.05135
- [15] K. Wijaya and Slamin, Total vertex irregular labeling of wheels, fans, suns and friendship graphs, J. Combin. Math. Combin. Comput. 65 (2008) 103-112. Zbl1192.05139
- [16] K. Wijaya, Slamin, Surahmat and S. Jendrol, Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comput. 55 (2005) 129-136. Zbl1100.05090

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.