Total vertex irregularity strength of disjoint union of Helm graphs
Ali Ahmad; E.T. Baskoro; M. Imran
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 3, page 427-434
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topAli Ahmad, E.T. Baskoro, and M. Imran. "Total vertex irregularity strength of disjoint union of Helm graphs." Discussiones Mathematicae Graph Theory 32.3 (2012): 427-434. <http://eudml.org/doc/270908>.
@article{AliAhmad2012,
abstract = {A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set \{1,2,...,k\} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined an exact value of the total vertex irregularity strength of disjoint union of Helm graphs.},
author = {Ali Ahmad, E.T. Baskoro, M. Imran},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {vertex irregular total k-labeling; Helm graphs; total vertex irregularity strength; vertex irregular total -labeling; total vertex irregularity},
language = {eng},
number = {3},
pages = {427-434},
title = {Total vertex irregularity strength of disjoint union of Helm graphs},
url = {http://eudml.org/doc/270908},
volume = {32},
year = {2012},
}
TY - JOUR
AU - Ali Ahmad
AU - E.T. Baskoro
AU - M. Imran
TI - Total vertex irregularity strength of disjoint union of Helm graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 3
SP - 427
EP - 434
AB - A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1,2,...,k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined an exact value of the total vertex irregularity strength of disjoint union of Helm graphs.
LA - eng
KW - vertex irregular total k-labeling; Helm graphs; total vertex irregularity strength; vertex irregular total -labeling; total vertex irregularity
UR - http://eudml.org/doc/270908
ER -
References
top- [1] A. Ahmad and M. Bača, On vertex irregular total labelings, Ars Combin. (to appear). Zbl1313.05314
- [2] A. Ahmad, K.M. Awan, I. Javaid, and Slamin, Total vertex irregularity strength of wheel related graphs, Australas. J. Combin. 51 (2011) 147-156. Zbl1233.05170
- [3] M. Anholcer, M. Kalkowski and J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009) 6316-6317, doi: 10.1016/j.disc.2009.05.023. Zbl1210.05117
- [4] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388, doi: 10.1016/j.disc.2005.11.075. Zbl1115.05079
- [5] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241-254, doi: 10.1002/jgt.10158. Zbl1034.05015
- [6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
- [7] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schlep, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math. 76 (1988) 223-240, doi: 10.1016/0012-365X(89)90321-X. Zbl0685.05029
- [8] A. Frieze, R.J. Gould, M. Karoński, and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120-137, doi: 10.1002/jgt.10056. Zbl1016.05045
- [9] A. Gyárfás, The irregularity strength of is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9. Zbl0681.05066
- [10] S. Jendrol', M. Tkáč and Zs. Tuza, The irregularity strength and cost of the union of cliques, Discrete Math. 150 (1996) 179-186, doi: 10.1016/0012-365X(95)00186-Z. Zbl0852.05054
- [11] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 139-1321, doi: 10.1137/090774112. Zbl1237.05183
- [12] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313-323, doi: 10.1137/S0895480196314291. Zbl0947.05067
- [13] Nurdin, E.T. Baskoro, A.N.M. Salamn and N.N. Goas, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041. Zbl1208.05014
- [14] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009) 511-516, doi: 10.1137/070707385. Zbl1216.05135
- [15] K. Wijaya and Slamin, Total vertex irregular labeling of wheels, fans, suns and friendship graphs, J. Combin. Math. Combin. Comput. 65 (2008) 103-112. Zbl1192.05139
- [16] K. Wijaya, Slamin, Surahmat and S. Jendrol, Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comput. 55 (2005) 129-136. Zbl1100.05090
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.