# On the properties of the Generalized Normal Distribution

Thomas L. Toulias; Christos P. Kitsos

Discussiones Mathematicae Probability and Statistics (2014)

- Volume: 34, Issue: 1-2, page 35-49
- ISSN: 1509-9423

## Access Full Article

top## Abstract

top## How to cite

topThomas L. Toulias, and Christos P. Kitsos. "On the properties of the Generalized Normal Distribution." Discussiones Mathematicae Probability and Statistics 34.1-2 (2014): 35-49. <http://eudml.org/doc/270912>.

@article{ThomasL2014,

abstract = {The target of this paper is to provide a critical review and to enlarge the theory related to the Generalized Normal Distributions (GND). This three term (position, scale shape) distribution is based in a strong theoretical background due to Logarithm Sobolev Inequalities. Moreover, the GND is the appropriate one to support the Generalized entropy type Fisher's information measure.},

author = {Thomas L. Toulias, Christos P. Kitsos},

journal = {Discussiones Mathematicae Probability and Statistics},

keywords = {entropy type Fisher's information; Shannon entropy; Normal distribution; truncated distribution; entropy type Fisher's informaiton; normal distribution},

language = {eng},

number = {1-2},

pages = {35-49},

title = {On the properties of the Generalized Normal Distribution},

url = {http://eudml.org/doc/270912},

volume = {34},

year = {2014},

}

TY - JOUR

AU - Thomas L. Toulias

AU - Christos P. Kitsos

TI - On the properties of the Generalized Normal Distribution

JO - Discussiones Mathematicae Probability and Statistics

PY - 2014

VL - 34

IS - 1-2

SP - 35

EP - 49

AB - The target of this paper is to provide a critical review and to enlarge the theory related to the Generalized Normal Distributions (GND). This three term (position, scale shape) distribution is based in a strong theoretical background due to Logarithm Sobolev Inequalities. Moreover, the GND is the appropriate one to support the Generalized entropy type Fisher's information measure.

LA - eng

KW - entropy type Fisher's information; Shannon entropy; Normal distribution; truncated distribution; entropy type Fisher's informaiton; normal distribution

UR - http://eudml.org/doc/270912

ER -

## References

top- [1] W.A. Benter, Generalized Poincaré inequality for the Gaussian measures, Amer. Math. Soc. 105 (2) (1989) 49-60.
- [2] T. Cacoullos and M. Koutras, Quadric forms in sherical random variables: Generalized non-central χ² distribution, Naval Research Logistics Quarterly 31 (1984) 447-461. doi: 10.1002/nav.3800310310. Zbl0561.62049
- [3] T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd Ed. (Wiley, 2006). Zbl1140.94001
- [4] K. Fragiadakis and S.G. Meintanis, Test of fit for asymentric Laplace distributions with applications, J. of Statistics: Advances in Theory and Applications 1 (1) (2009) 49-63. Zbl1166.62028
- [5] E. Gómez, M.A. Gómez-Villegas and J.M. Marin, A multivariate generalization of the power exponential family of distributions, Comm. Statist. Theory Methods 27 (3) (1998) 589-600. doi: 10.1080/03610929808832115 Zbl0895.62053
- [6] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, 2007). Zbl1208.65001
- [7] L. Gross, Logarithm Sobolev inequalities, Amer. J. Math. 97 (761) (1975) 1061-1083. doi: 10.2307/2373688
- [8] C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (6) (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179
- [9] C.P. Kitsos and N.K. Tavoularis, New entropy type information measures, in: Information Technology Interfaces (ITI 2009), Luzar, Jarec and Bekic (Ed(s)), (Dubrovnic, Croatia, 2009) 255-259.
- [10] C.P. Kitsos and T.L. Toulias, Bounds for the generalized entropy-type information measure, J. Comm. Comp. 9 (1) (2012) 56-64.
- [11] C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (1) (2012) 49-73. Zbl1252.60020
- [12] C.P. Kitsos and T.L. Toulias, On the family of the γ-ordered normal distributions, Far East J. of Theoretical Statistics 35 (2) (2011) 95-114. Zbl1242.60013
- [13] C.P. Kitsos and T.L. Toulias, New information measures for the generalized normal distribution, Information 1 (2010) 13-27. doi: 10.3390/info1010013.
- [14] C.P. Kitsos and T.L. Toulias, Entropy inequalities for the generalized Gaussia, in: Information Technology Interfaces (ITI 2010), Cavtat, Croatia (Ed(s)), (2010, 551-556.
- [15] S. Kotz, Multivariate distribution at a cross-road, in: Statistical Distributions in Scientific Work Vol. 1, Patil, Kotz, Ord (Ed(s)), (Dordrecht, The Netherlands: D. Reidel Publ., 1975) 247-270. doi:10.1007/978-94-010-1842-5₂0.
- [16] S. Kullback and A. Leibler A, On information and sufficiency, Ann. Math. Statist. 22 (1951) 79-86. doi: 10.1214/aoms/1177729694. Zbl0042.38403
- [17] S. Nadarajah, A generalized normal distribution, J. Appl. Stat. 32 (7) (2005) 685-694. doi: 10.1080/02664760500079464 Zbl1121.62447
- [18] S. Nadarajah, The Kotz type distribution with applications, Statistics 37 (4) (2003) 341-358. doi: 10.1080/0233188031000078060 Zbl1037.62048
- [19] T. Papaioanou and K. Ferentinos, Entropic descriptor of a complex behaviour, Comm. Stat. Theory and Methods 34 (2005) 1461-1470. Zbl1073.62003
- [20] M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear difussions, hypercontractivity and the optimal ${L}^{p}$-Euclidean logarithic Sobolev ineqiality, J. Math. Anal. Appl. 293 (2) (2004) 375-388. doi: 10.1016/j.jmaa.2003.10.009 Zbl1058.35124
- [21] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379-423, 623-656. doi: j.1538-7305.1948.tb01338.x. Zbl1154.94303
- [22] S. Sobolev, On a theorem of functional analysis, English translation: AMS Transl. Ser. 2 34 (1963) 39-68.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.