MLE for the γ-order Generalized Normal Distribution

Christos P. Kitsos; Vassilios G. Vassiliadis; Thomas L. Toulias

Discussiones Mathematicae Probability and Statistics (2014)

  • Volume: 34, Issue: 1-2, page 143-158
  • ISSN: 1509-9423

Abstract

top
The introduced three parameter (position μ, scale ∑ and shape γ) multivariate generalized Normal distribution (γ-GND) is based on a strong theoretical background and emerged from Logarithmic Sobolev Inequalities. It includes a number of well known distributions such as the multivariate Uniform, Normal, Laplace and the degenerated Dirac distributions. In this paper, the cumulative distribution, the truncated distribution and the hazard rate of the γ-GND are presented. In addition, the Maximum Likelihood Estimation (MLE) method is discussed in both the univariate and multivariate cases and asymptotic results are presented.

How to cite

top

Christos P. Kitsos, Vassilios G. Vassiliadis, and Thomas L. Toulias. "MLE for the γ-order Generalized Normal Distribution." Discussiones Mathematicae Probability and Statistics 34.1-2 (2014): 143-158. <http://eudml.org/doc/270919>.

@article{ChristosP2014,
abstract = {The introduced three parameter (position μ, scale ∑ and shape γ) multivariate generalized Normal distribution (γ-GND) is based on a strong theoretical background and emerged from Logarithmic Sobolev Inequalities. It includes a number of well known distributions such as the multivariate Uniform, Normal, Laplace and the degenerated Dirac distributions. In this paper, the cumulative distribution, the truncated distribution and the hazard rate of the γ-GND are presented. In addition, the Maximum Likelihood Estimation (MLE) method is discussed in both the univariate and multivariate cases and asymptotic results are presented.},
author = {Christos P. Kitsos, Vassilios G. Vassiliadis, Thomas L. Toulias},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {γ-order Normal distribution; cumulative distribution; truncated distribution; hazard rate; Maximum likelihood estimation; -order normal distribution; maximum likelihood estimation},
language = {eng},
number = {1-2},
pages = {143-158},
title = {MLE for the γ-order Generalized Normal Distribution},
url = {http://eudml.org/doc/270919},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Christos P. Kitsos
AU - Vassilios G. Vassiliadis
AU - Thomas L. Toulias
TI - MLE for the γ-order Generalized Normal Distribution
JO - Discussiones Mathematicae Probability and Statistics
PY - 2014
VL - 34
IS - 1-2
SP - 143
EP - 158
AB - The introduced three parameter (position μ, scale ∑ and shape γ) multivariate generalized Normal distribution (γ-GND) is based on a strong theoretical background and emerged from Logarithmic Sobolev Inequalities. It includes a number of well known distributions such as the multivariate Uniform, Normal, Laplace and the degenerated Dirac distributions. In this paper, the cumulative distribution, the truncated distribution and the hazard rate of the γ-GND are presented. In addition, the Maximum Likelihood Estimation (MLE) method is discussed in both the univariate and multivariate cases and asymptotic results are presented.
LA - eng
KW - γ-order Normal distribution; cumulative distribution; truncated distribution; hazard rate; Maximum likelihood estimation; -order normal distribution; maximum likelihood estimation
UR - http://eudml.org/doc/270919
ER -

References

top
  1. [1] M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions (Washington, National Bureau of Standards, 1964). 
  2. [2] G. Agrò, Maximum likelihood estimation for the exponential power distribution, Comm. in Stat. - Simulation and Computation 24 (2) (1995) 523-536. doi: 10.1080/03610919508813255 
  3. [3] H. Alzer, On some inequalities for the incomplete gamma function, Mathematics of Computation 66 (228) (1997) 771-778. doi: 10.1090/S0025-5718-97-00814-4 Zbl0865.33002
  4. [4] M. Chiodi, Sulle distribuzioni di campionamento delle stime di massima verosimiglianza dei parametri delle curve Normali di ordine p, Technical report, Istituto di Statistica, Facoltá di Economia e Commercio di Palermo 1988. 
  5. [5] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1994). doi: 10.1017/CBO9780511840371. 
  6. [6] J.R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics (New York, Wiley, 1998). Zbl0651.15001
  7. [7] A.M. Mineo, Un nuovo metodo di stima di p per una corretta valutazione dei parametri di intensitá e di scala di una curva Normale di ordine p, in: Atti della XXXVII Riunione Scientifica della SIS, San Remo (Ed(s)), (1994, 147-154. 
  8. [8] A.M. Mineo and M. Ruggieri, A software tool for the exponential power distribution: The normalp package, J. Stat. Software (2005) 1-24. 
  9. [9] T.P. Minka, Old and new matrix algebra useful for statistics, Notes 2000. 
  10. [10] S.R. Searle, Matrix Algebra Useful for Statistics (New York, Wiley, 1982). Zbl0555.62002
  11. [11] C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (6) (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179 
  12. [12] C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (1) (2012) 49-73. Zbl1252.60020
  13. [13] G. Lunetta, Di alcune distribuzioni deducibili da una generalizzazione dello schema della curva Normale, Annali della Facoltá di Economia e Commercio di Palermo 20 (1966) 119-143. 
  14. [14] D.N. Naik and K. Plungpongpun, A Kotz-Type distribution for multivariate statistical inference, Statistics for Industry and Technology (2006) 111-124. doi: 10.1007/0-8176-4487-3_7. Zbl05196666

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.