Random procedures for dominating sets in bipartite graphs
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 2, page 277-288
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topSarah Artmann, and Jochen Harant. "Random procedures for dominating sets in bipartite graphs." Discussiones Mathematicae Graph Theory 30.2 (2010): 277-288. <http://eudml.org/doc/270924>.
@article{SarahArtmann2010,
abstract = {Using multilinear functions and random procedures, new upper bounds on the domination number of a bipartite graph in terms of the cardinalities and the minimum degrees of the two colour classes are established.},
author = {Sarah Artmann, Jochen Harant},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {domination; bipartite graph; multilinear function; random procedure},
language = {eng},
number = {2},
pages = {277-288},
title = {Random procedures for dominating sets in bipartite graphs},
url = {http://eudml.org/doc/270924},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Sarah Artmann
AU - Jochen Harant
TI - Random procedures for dominating sets in bipartite graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 2
SP - 277
EP - 288
AB - Using multilinear functions and random procedures, new upper bounds on the domination number of a bipartite graph in terms of the cardinalities and the minimum degrees of the two colour classes are established.
LA - eng
KW - domination; bipartite graph; multilinear function; random procedure
UR - http://eudml.org/doc/270924
ER -
References
top- [1] N. Alon and J. Spencer, The Probabilistic Method (John Wiley and Sons, Inc., 1992). Zbl0767.05001
- [2] V.I. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices, (Russian), Prikl. Mat. Programm. 11 (1974) 3-8.
- [3] S. Artmann, F. Göring, J. Harant, D. Rautenbach and I. Schiermeyer, Random procedures for dominating sets in graphs, submitted. Zbl1230.05222
- [4] Y. Caro, New results on the independence number (Technical Report. Tel-Aviv University, 1979).
- [5] Y. Caro and Y. Roditty, On the vertex-independence number and star decomposition of graphs, Ars Combin. 20 (1985) 167-180. Zbl0623.05031
- [6] Y. Caro and Y. Roditty, A note on the k-domination number of a graph, Internat. J. Math. Sci. 13 (1990) 205-206, doi: 10.1155/S016117129000031X. Zbl0706.05033
- [7] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problems in sun-free chordal graphs, SIAM J. Algebraic Discrete Methods 5 (1984) 332-345, doi: 10.1137/0605034. Zbl0576.05054
- [8] F. Göring and J. Harant, On domination in graphs, Discuss. Math. Graph Theory 25 (2005) 7-12, doi: 10.7151/dmgt.1254. Zbl1077.05075
- [9] J. Harant and A. Pruchnewski, A note on the domination number of a bipartite graph, Ann. Combin. 5 (2001) 175-178, doi: 10.1007/PL00001298. Zbl0987.05078
- [10] J. Harant, A. Pruchnewski, and M. Voigt, On dominating sets and independendent sets of graphs, Combin. Prob. Comput. 8 (1999) 547-553, doi: 10.1017/S0963548399004034. Zbl0959.05080
- [11] J. Harant and D. Rautenbach, Domination in bipartite graphs, Discrete Math. 309 (2009) 113-122, doi: 10.1016/j.disc.2007.12.051. Zbl1181.05069
- [12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, Inc., New York, 1998). Zbl0890.05002
- [13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs Advanced Topics (Marcel Dekker, Inc., New York, 1998). Zbl0883.00011
- [14] C. Payan, Sur le nombre d'absorption d'un graphe simple, (French), Cah. Cent. Étud. Rech. Opér. 17 (1975) 307-317. Zbl0341.05126
- [15] V.K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum 81-11217-9 (Murray Hill, NJ, 1981).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.