On Poincaré duality for pairs (G,W)
Maria Gorete Carreira Andrade; Ermínia de Lourdes Campello Fanti; Lígia Laís Fêmina
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMaria Gorete Carreira Andrade, Ermínia de Lourdes Campello Fanti, and Lígia Laís Fêmina. "On Poincaré duality for pairs (G,W)." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/270926>.
@article{MariaGoreteCarreiraAndrade2015,
abstract = {Let G be a group and W a G-set. In this work we prove a result that describes geometrically, for a Poincaré duality pair (G, W ), the set of representatives for the G-orbits in W and the family of isotropy subgroups. We also prove, through a cohomological invariant, a necessary condition for a pair (G, W ) to be a Poincaré duality pair when W is infinite.},
author = {Maria Gorete Carreira Andrade, Ermínia de Lourdes Campello Fanti, Lígia Laís Fêmina},
journal = {Open Mathematics},
keywords = {Poincaré duality pairs; Cohomology of groups; Cohomological invariants},
language = {eng},
number = {1},
pages = {null},
title = {On Poincaré duality for pairs (G,W)},
url = {http://eudml.org/doc/270926},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Maria Gorete Carreira Andrade
AU - Ermínia de Lourdes Campello Fanti
AU - Lígia Laís Fêmina
TI - On Poincaré duality for pairs (G,W)
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - Let G be a group and W a G-set. In this work we prove a result that describes geometrically, for a Poincaré duality pair (G, W ), the set of representatives for the G-orbits in W and the family of isotropy subgroups. We also prove, through a cohomological invariant, a necessary condition for a pair (G, W ) to be a Poincaré duality pair when W is infinite.
LA - eng
KW - Poincaré duality pairs; Cohomology of groups; Cohomological invariants
UR - http://eudml.org/doc/270926
ER -
References
top- [1] Andrade, M.G.C., Fanti, E.L.C., A relative cohomological invariant for pairs of groups, Manuscripta Math., 1994, 83, 1-18. [Crossref] Zbl0837.20061
- [2] Andrade, M.G.C., Fanti, E.L.C., Daccach, J. A., On certain relative invariants, Int. J. Pure Appl. Math., 2005, 21(3), 335-352. Zbl1121.20038
- [3] Andrade, M.G.C., Fanti, E.L.C., Fêmina, L.L., Some remarks about Poincaré duality pairs, JP J. Geom. Topol., 2012, 12(2), 159-172. Zbl1262.20055
- [4] Bieri, R., Eckmann, B., Relative homology and Poincaré duality for group pairs, J. Pure Appl. Algebra, 1978, 13, 277-319. [Crossref] Zbl0392.20032
- [5] Brown, K.S., Cohomology of groups, Grad. Texts in Mat. 87, Springer, Berlin-New York-Heidelberg, 1982.
- [6] Dicks, W., Dunwoody, M. J., Groups acting on graphs, Cambridge University Press, Cambridge, 1989. Zbl0665.20001
- [7] Kropholler, P. H., Roller, M. A., Splittings of Poincaré duality groups II, J. Lond. Math. Soc., 1988, 38, 410-420. Zbl0687.20045
- [8] Weiss, E., Cohomology of Groups, Academic Press Inc., New York, 1969. Zbl0192.34204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.