Intersection graph of gamma sets in the total graph

T. Tamizh Chelvam; T. Asir

Discussiones Mathematicae Graph Theory (2012)

  • Volume: 32, Issue: 2, page 341-356
  • ISSN: 2083-5892

Abstract

top
In this paper, we consider the intersection graph I Γ ( ) of gamma sets in the total graph on ℤₙ. We characterize the values of n for which I Γ ( ) is complete, bipartite, cycle, chordal and planar. Further, we prove that I Γ ( ) is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also we obtain the value of the independent number, the clique number, the chromatic number, the connectivity and some domination parameters of I Γ ( ) .

How to cite

top

T. Tamizh Chelvam, and T. Asir. "Intersection graph of gamma sets in the total graph." Discussiones Mathematicae Graph Theory 32.2 (2012): 341-356. <http://eudml.org/doc/270932>.

@article{T2012,
abstract = {In this paper, we consider the intersection graph $I_\{Γ\}(ℤₙ)$ of gamma sets in the total graph on ℤₙ. We characterize the values of n for which $I_\{Γ\}(ℤₙ)$ is complete, bipartite, cycle, chordal and planar. Further, we prove that $I_\{Γ\}(ℤₙ)$ is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also we obtain the value of the independent number, the clique number, the chromatic number, the connectivity and some domination parameters of $I_\{Γ\}(ℤₙ)$.},
author = {T. Tamizh Chelvam, T. Asir},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {total graph; gamma sets; intersection graph; Hamiltonian; coloring; connectivity; domination number; independence number; clique number},
language = {eng},
number = {2},
pages = {341-356},
title = {Intersection graph of gamma sets in the total graph},
url = {http://eudml.org/doc/270932},
volume = {32},
year = {2012},
}

TY - JOUR
AU - T. Tamizh Chelvam
AU - T. Asir
TI - Intersection graph of gamma sets in the total graph
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 2
SP - 341
EP - 356
AB - In this paper, we consider the intersection graph $I_{Γ}(ℤₙ)$ of gamma sets in the total graph on ℤₙ. We characterize the values of n for which $I_{Γ}(ℤₙ)$ is complete, bipartite, cycle, chordal and planar. Further, we prove that $I_{Γ}(ℤₙ)$ is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also we obtain the value of the independent number, the clique number, the chromatic number, the connectivity and some domination parameters of $I_{Γ}(ℤₙ)$.
LA - eng
KW - total graph; gamma sets; intersection graph; Hamiltonian; coloring; connectivity; domination number; independence number; clique number
UR - http://eudml.org/doc/270932
ER -

References

top
  1. [1] S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009) 2224-2228, doi: 10.1016/j.jpaa.2009.03.013. Zbl1174.13009
  2. [2] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719, doi: 10.1016/j.jalgebra.2008.06.028. Zbl1158.13001
  3. [3] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447, doi: 10.1006/jabr.1998.7840. Zbl0941.05062
  4. [4] N. Ashrafia, H.R. Maimanibc, M.R. Pournakicd and S. Yassemie, Unit graphs associated with rings, Comm. Algebra 38 (2010) 2851?-2871, doi: 10.1080/00927870903095574. 
  5. [5] R. Balakrishnan and K. Ranganathan, A text book of Graph Theory, (Springer, 2000). Zbl0938.05001
  6. [6] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Electronic Notes in Discrete Math. 23 (2005) 23-32, doi: 10.1016/j.endm.2005.06.104. Zbl1193.05086
  7. [7] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381-5392, doi: 10.1016/j.disc.2008.11.034. Zbl1193.05087
  8. [8] G. Chartrand and L. Lesniak, Graphs and Digraphs, (Chapman & Hall/CRC., 2000). Zbl0890.05001
  9. [9] G. Chartrand and P. Zhang, Chromatic Graph Theory, (CRC Press, 2009). Zbl1169.05001
  10. [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of Domination in Graphs, (Marcel Dekker Inc., 1998). Zbl0890.05002
  11. [11] H.R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808, doi: 10.1016/j.jalgebra.2007.02.003. Zbl1141.13008
  12. [12] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, (SIAM Monographs on Discrete Math. Applications., 1999), doi: 10.1137/1.9780898719802. Zbl0945.05003
  13. [13] T. Tamizh Chelvam and T. Asir, A note on total graph of ℤₙ, J. Discrete Math. Sci. Cryptography 14 (2011) 1-7. Zbl1261.05042
  14. [14] T. Tamizh Chelvam and T. Asir, Domination in the total graph on ℤₙ, J. Combin. Math. Combin. Comput., submitted. Zbl1297.05114
  15. [15] A.T. White, Graphs, Groups and Surfaces, (North-Holland, Amsterdam., 1973). Zbl0268.05102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.