# An inductive proof of Whitney's Broken Circuit Theorem

Discussiones Mathematicae Graph Theory (2011)

- Volume: 31, Issue: 3, page 509-515
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topKlaus Dohmen. "An inductive proof of Whitney's Broken Circuit Theorem." Discussiones Mathematicae Graph Theory 31.3 (2011): 509-515. <http://eudml.org/doc/270937>.

@article{KlausDohmen2011,

abstract = {We present a new proof of Whitney's broken circuit theorem based on induction on the number of edges and the deletion-contraction formula.},

author = {Klaus Dohmen},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {chromatic polynomial; broken circuit; induction},

language = {eng},

number = {3},

pages = {509-515},

title = {An inductive proof of Whitney's Broken Circuit Theorem},

url = {http://eudml.org/doc/270937},

volume = {31},

year = {2011},

}

TY - JOUR

AU - Klaus Dohmen

TI - An inductive proof of Whitney's Broken Circuit Theorem

JO - Discussiones Mathematicae Graph Theory

PY - 2011

VL - 31

IS - 3

SP - 509

EP - 515

AB - We present a new proof of Whitney's broken circuit theorem based on induction on the number of edges and the deletion-contraction formula.

LA - eng

KW - chromatic polynomial; broken circuit; induction

UR - http://eudml.org/doc/270937

ER -

## References

top- [1] G.D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math. 14 (1912) 42-46, doi: 10.2307/1967597. Zbl43.0574.02
- [2] N. Biggs, Algebraic Graph Theory, 2nd edition, (Cambridge University Press, 1994). Zbl0797.05032
- [3] A. Blass and B.E. Sagan, Bijective proofs of two broken circuit theorems, J. Graph Theory 10 (1986) 15-21, doi: 10.1002/jgt.3190100104. Zbl0592.05022
- [4] K. Dohmen, An improvement of the inclusion-exclusion principle, Arch. Math. 72 (1999) 298-303, doi: 10.1007/s000130050336. Zbl0934.05011
- [5] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0. Zbl0173.26203
- [6] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932) 572-579, doi: 10.1090/S0002-9904-1932-05460-X. Zbl0005.14602

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.