An extended Prony’s interpolation scheme on an equispaced grid

Dovile Karalienė; Zenonas Navickas; Raimondas Čiegis; Minvydas Ragulskis

Open Mathematics (2015)

  • Volume: 13, Issue: 1
  • ISSN: 2391-5455

Abstract

top
An interpolation scheme on an equispaced grid based on the concept of the minimal order of the linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected signals.

How to cite

top

Dovile Karalienė, et al. "An extended Prony’s interpolation scheme on an equispaced grid." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/270946>.

@article{DovileKaralienė2015,
abstract = {An interpolation scheme on an equispaced grid based on the concept of the minimal order of the linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected signals.},
author = {Dovile Karalienė, Zenonas Navickas, Raimondas Čiegis, Minvydas Ragulskis},
journal = {Open Mathematics},
keywords = {Interpolation; Prony method; The minimal order of linear recurrent sequence},
language = {eng},
number = {1},
pages = {null},
title = {An extended Prony’s interpolation scheme on an equispaced grid},
url = {http://eudml.org/doc/270946},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Dovile Karalienė
AU - Zenonas Navickas
AU - Raimondas Čiegis
AU - Minvydas Ragulskis
TI - An extended Prony’s interpolation scheme on an equispaced grid
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - An interpolation scheme on an equispaced grid based on the concept of the minimal order of the linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected signals.
LA - eng
KW - Interpolation; Prony method; The minimal order of linear recurrent sequence
UR - http://eudml.org/doc/270946
ER -

References

top
  1. [1] Badeau R., David B., High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials, IEEE Trans. Signal Process., 2006, 54, 1341–1350. [Crossref] 
  2. [2] Badeau R., Richard G., David B., Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials, IEEE Trans. Signal Process., 2008, 56, 492–504. [WoS][Crossref] 
  3. [3] Ehlich H., Zeller K., Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 1996, 164, 105–112. [Crossref] Zbl0136.04604
  4. [4] Higham N.J., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 2004, 24, 547–556. [Crossref] Zbl1067.65016
  5. [5] Navickas Z., Bikulciene L., Expressions of solutions of ordinary differential equations by standard functions, Mathematical Modeling and Analysis, 2006, 11, 399–412. Zbl1124.34301
  6. [6] Peter T., Plonaka G., A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse Problems, 2013, 29, 025001. [Crossref][WoS] 
  7. [7] Platte R.B., Trefethen L.N., Kuijlaars A.B.J., Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Review, 2011, 53, 308–314. [WoS][Crossref] Zbl1247.41001
  8. [8] Ragulskis M., Lukoseviciute K., Navickas Z., Palivonaite R., Short-term time series forecasting based on the identification of skeleton algebraic sequences, Neurocomputing, 2011, 64, 1735–1747. [WoS][Crossref] 
  9. [9] Runge C., Uber empirische Funktionen and die Interpolation zwischen aquidistanten Ordinaten, Z. Math. Phys., 1901, 46 224– 243. Zbl32.0272.02
  10. [10] Salzer H.E., Lagrangian interpolation at the Chebyshev points xn;υ = cos(υπ/n), υ = 0(1)n; some unnoted advantages, Computer J., 1972, 15, 156–159. Zbl0242.65007
  11. [11] Schonhage A., Fehlerfortpflanzung bei Interpolation, Numer. Math., 1961, 3, 62–71. [Crossref] Zbl0125.07501
  12. [12] Trefethen L.N., Pachon R., Platte R.B., Driscoll T.A., Chebfun Version 2, http://www.comlab.ox.ac.uk/chebfun/, Oxford University, 2008. 
  13. [13] Turetskii A.H., The bounding of polynomials prescribed at equally distributed points, Proc. Pedag. Inst. CityplaceVitebsk, 1940, 3, 117–127. 
  14. [14] Osborne M.R., Smyth G.K., A Modified Prony Algorithm For Exponential Function Fitting, SIAM Journal of Scientific Computing, 1995, 16, 119–138. Zbl0812.62070
  15. [15] Martin C., Miller J., Pearce K., Numerical solution of positive sum exponential equations, Applied Mathematics and Computation, 1989, 34, 89–93. Zbl0685.65047
  16. [16] Fuite J., Marsh R.E., Tuszynski J.A., An application of Prony’s sum of exponentials method to pharmacokinetic data analysis, Commun. Comput. Phys., 2007, 2, 87–98. 
  17. [17] Giesbrecht M., Labahn G., Wen-shin Lee, Symbolic-numeric sparse interpolation of multivariate polynomials, Journal of Symbolic Computation, 2009, 44, 943–959. Zbl1167.65003
  18. [18] Steedly W., Ying C.J., Moses O.L., A modified TLS-Prony method using data decimation, IEEE Transactions on Signal Processing, 1992, 42, 2292–2303. [Crossref] 
  19. [19] Kurakin V.L., Kuzmin A.S., Mikhalev A.V., Nechavev A.A., Linear recurring sequneces over rings and modules, Journal of Mathematical Sciences, 1995, 76, 2793–2915. Zbl0859.11001
  20. [20] Kurakin V., Linear complexity of polinear sequences, Disctrete Math. Appl., 2001, 11, 1–51. [Crossref] Zbl1053.94010
  21. [21] Potts D., Tasche M., Parameter estimation for multivariate exponential sums, Electron. Trans. Numer. Anal., 2013, 40, 204–224. Zbl1305.65093
  22. [22] Kaltofen E., Villard G., On the complexity of computing determinants, Computers Mathematics Proc. Fifth Asian Symposium (ASCM 2001), Lecture Notes Series on Computing, 2001, 9, 13–27. Zbl1012.65505
  23. [23] Kaw A., Egwu K., Numerical Methods with Applications, Textbooks collection Book 11, 2010, ch. 5. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.