An extended Prony’s interpolation scheme on an equispaced grid
Dovile Karalienė; Zenonas Navickas; Raimondas Čiegis; Minvydas Ragulskis
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDovile Karalienė, et al. "An extended Prony’s interpolation scheme on an equispaced grid." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/270946>.
@article{DovileKaralienė2015,
abstract = {An interpolation scheme on an equispaced grid based on the concept of the minimal order of the linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected signals.},
author = {Dovile Karalienė, Zenonas Navickas, Raimondas Čiegis, Minvydas Ragulskis},
journal = {Open Mathematics},
keywords = {Interpolation; Prony method; The minimal order of linear recurrent sequence},
language = {eng},
number = {1},
pages = {null},
title = {An extended Prony’s interpolation scheme on an equispaced grid},
url = {http://eudml.org/doc/270946},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Dovile Karalienė
AU - Zenonas Navickas
AU - Raimondas Čiegis
AU - Minvydas Ragulskis
TI - An extended Prony’s interpolation scheme on an equispaced grid
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - An interpolation scheme on an equispaced grid based on the concept of the minimal order of the linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected signals.
LA - eng
KW - Interpolation; Prony method; The minimal order of linear recurrent sequence
UR - http://eudml.org/doc/270946
ER -
References
top- [1] Badeau R., David B., High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials, IEEE Trans. Signal Process., 2006, 54, 1341–1350. [Crossref]
- [2] Badeau R., Richard G., David B., Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials, IEEE Trans. Signal Process., 2008, 56, 492–504. [WoS][Crossref]
- [3] Ehlich H., Zeller K., Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 1996, 164, 105–112. [Crossref] Zbl0136.04604
- [4] Higham N.J., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 2004, 24, 547–556. [Crossref] Zbl1067.65016
- [5] Navickas Z., Bikulciene L., Expressions of solutions of ordinary differential equations by standard functions, Mathematical Modeling and Analysis, 2006, 11, 399–412. Zbl1124.34301
- [6] Peter T., Plonaka G., A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse Problems, 2013, 29, 025001. [Crossref][WoS]
- [7] Platte R.B., Trefethen L.N., Kuijlaars A.B.J., Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Review, 2011, 53, 308–314. [WoS][Crossref] Zbl1247.41001
- [8] Ragulskis M., Lukoseviciute K., Navickas Z., Palivonaite R., Short-term time series forecasting based on the identification of skeleton algebraic sequences, Neurocomputing, 2011, 64, 1735–1747. [WoS][Crossref]
- [9] Runge C., Uber empirische Funktionen and die Interpolation zwischen aquidistanten Ordinaten, Z. Math. Phys., 1901, 46 224– 243. Zbl32.0272.02
- [10] Salzer H.E., Lagrangian interpolation at the Chebyshev points xn;υ = cos(υπ/n), υ = 0(1)n; some unnoted advantages, Computer J., 1972, 15, 156–159. Zbl0242.65007
- [11] Schonhage A., Fehlerfortpflanzung bei Interpolation, Numer. Math., 1961, 3, 62–71. [Crossref] Zbl0125.07501
- [12] Trefethen L.N., Pachon R., Platte R.B., Driscoll T.A., Chebfun Version 2, http://www.comlab.ox.ac.uk/chebfun/, Oxford University, 2008.
- [13] Turetskii A.H., The bounding of polynomials prescribed at equally distributed points, Proc. Pedag. Inst. CityplaceVitebsk, 1940, 3, 117–127.
- [14] Osborne M.R., Smyth G.K., A Modified Prony Algorithm For Exponential Function Fitting, SIAM Journal of Scientific Computing, 1995, 16, 119–138. Zbl0812.62070
- [15] Martin C., Miller J., Pearce K., Numerical solution of positive sum exponential equations, Applied Mathematics and Computation, 1989, 34, 89–93. Zbl0685.65047
- [16] Fuite J., Marsh R.E., Tuszynski J.A., An application of Prony’s sum of exponentials method to pharmacokinetic data analysis, Commun. Comput. Phys., 2007, 2, 87–98.
- [17] Giesbrecht M., Labahn G., Wen-shin Lee, Symbolic-numeric sparse interpolation of multivariate polynomials, Journal of Symbolic Computation, 2009, 44, 943–959. Zbl1167.65003
- [18] Steedly W., Ying C.J., Moses O.L., A modified TLS-Prony method using data decimation, IEEE Transactions on Signal Processing, 1992, 42, 2292–2303. [Crossref]
- [19] Kurakin V.L., Kuzmin A.S., Mikhalev A.V., Nechavev A.A., Linear recurring sequneces over rings and modules, Journal of Mathematical Sciences, 1995, 76, 2793–2915. Zbl0859.11001
- [20] Kurakin V., Linear complexity of polinear sequences, Disctrete Math. Appl., 2001, 11, 1–51. [Crossref] Zbl1053.94010
- [21] Potts D., Tasche M., Parameter estimation for multivariate exponential sums, Electron. Trans. Numer. Anal., 2013, 40, 204–224. Zbl1305.65093
- [22] Kaltofen E., Villard G., On the complexity of computing determinants, Computers Mathematics Proc. Fifth Asian Symposium (ASCM 2001), Lecture Notes Series on Computing, 2001, 9, 13–27. Zbl1012.65505
- [23] Kaw A., Egwu K., Numerical Methods with Applications, Textbooks collection Book 11, 2010, ch. 5.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.