The independent domination number of a random graph
Discussiones Mathematicae Graph Theory (2011)
- Volume: 31, Issue: 1, page 129-142
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topLane Clark, and Darin Johnson. "The independent domination number of a random graph." Discussiones Mathematicae Graph Theory 31.1 (2011): 129-142. <http://eudml.org/doc/270956>.
@article{LaneClark2011,
	abstract = {We prove a two-point concentration for the independent domination number of the random graph $G_\{n,p\}$ provided p²ln(n) ≥ 64ln((lnn)/p).},
	author = {Lane Clark, Darin Johnson},
	journal = {Discussiones Mathematicae Graph Theory},
	keywords = {random graph; two-point concentration; independent domination},
	language = {eng},
	number = {1},
	pages = {129-142},
	title = {The independent domination number of a random graph},
	url = {http://eudml.org/doc/270956},
	volume = {31},
	year = {2011},
}
TY  - JOUR
AU  - Lane Clark
AU  - Darin Johnson
TI  - The independent domination number of a random graph
JO  - Discussiones Mathematicae Graph Theory
PY  - 2011
VL  - 31
IS  - 1
SP  - 129
EP  - 142
AB  - We prove a two-point concentration for the independent domination number of the random graph $G_{n,p}$ provided p²ln(n) ≥ 64ln((lnn)/p).
LA  - eng
KW  - random graph; two-point concentration; independent domination
UR  - http://eudml.org/doc/270956
ER  - 
References
top- [1] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, New York, 1992). Zbl0767.05001
- [2] B. Bollobás, Random Graphs (Second Edition, Cambridge University Press, New York, 2001).
- [3] A. Bonato and C. Wang, A note on domination parameters in random graphs, Discuss. Math. Graph Theory 28 (2008) 307-322, doi: 10.7151/dmgt.1409. Zbl1156.05040
- [4] A. Godbole and B. Wieland, On the domination number of a Random graph, Electronic J. Combin. 8 (2001) 1-13. Zbl0989.05108
- [5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998). Zbl0890.05002
- [6] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998). Zbl0883.00011
- [7] K. Weber, Domination number for almost every graph, Rostocker Matematisches Kolloquium 16 (1981) 31-43. Zbl0476.05067
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 