# The independent domination number of a random graph

Discussiones Mathematicae Graph Theory (2011)

- Volume: 31, Issue: 1, page 129-142
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topLane Clark, and Darin Johnson. "The independent domination number of a random graph." Discussiones Mathematicae Graph Theory 31.1 (2011): 129-142. <http://eudml.org/doc/270956>.

@article{LaneClark2011,

abstract = {We prove a two-point concentration for the independent domination number of the random graph $G_\{n,p\}$ provided p²ln(n) ≥ 64ln((lnn)/p).},

author = {Lane Clark, Darin Johnson},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {random graph; two-point concentration; independent domination},

language = {eng},

number = {1},

pages = {129-142},

title = {The independent domination number of a random graph},

url = {http://eudml.org/doc/270956},

volume = {31},

year = {2011},

}

TY - JOUR

AU - Lane Clark

AU - Darin Johnson

TI - The independent domination number of a random graph

JO - Discussiones Mathematicae Graph Theory

PY - 2011

VL - 31

IS - 1

SP - 129

EP - 142

AB - We prove a two-point concentration for the independent domination number of the random graph $G_{n,p}$ provided p²ln(n) ≥ 64ln((lnn)/p).

LA - eng

KW - random graph; two-point concentration; independent domination

UR - http://eudml.org/doc/270956

ER -

## References

top- [1] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, New York, 1992). Zbl0767.05001
- [2] B. Bollobás, Random Graphs (Second Edition, Cambridge University Press, New York, 2001).
- [3] A. Bonato and C. Wang, A note on domination parameters in random graphs, Discuss. Math. Graph Theory 28 (2008) 307-322, doi: 10.7151/dmgt.1409. Zbl1156.05040
- [4] A. Godbole and B. Wieland, On the domination number of a Random graph, Electronic J. Combin. 8 (2001) 1-13. Zbl0989.05108
- [5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998). Zbl0890.05002
- [6] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998). Zbl0883.00011
- [7] K. Weber, Domination number for almost every graph, Rostocker Matematisches Kolloquium 16 (1981) 31-43. Zbl0476.05067

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.