Edge maximal -edge disjoint free graphs
M.S.A. Bataineh; M.M.M. Jaradat
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 2, page 271-278
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topM.S.A. Bataineh, and M.M.M. Jaradat. "Edge maximal $C_{2k+1}$-edge disjoint free graphs." Discussiones Mathematicae Graph Theory 32.2 (2012): 271-278. <http://eudml.org/doc/270966>.
@article{M2012,
abstract = {For two positive integers r and s, 𝓖(n;r,s) denotes to the class of graphs on n vertices containing no r of s-edge disjoint cycles and f(n;r,s) = max\{𝓔(G):G ∈ 𝓖(n;r,s)\}. In this paper, for integers r ≥ 2 and k ≥ 1, we determine f(n;r,2k+1) and characterize the edge maximal members in 𝓖(n;r,2k+1).},
author = {M.S.A. Bataineh, M.M.M. Jaradat},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {extremal graphs; edge disjoint; cycles},
language = {eng},
number = {2},
pages = {271-278},
title = {Edge maximal $C_\{2k+1\}$-edge disjoint free graphs},
url = {http://eudml.org/doc/270966},
volume = {32},
year = {2012},
}
TY - JOUR
AU - M.S.A. Bataineh
AU - M.M.M. Jaradat
TI - Edge maximal $C_{2k+1}$-edge disjoint free graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 2
SP - 271
EP - 278
AB - For two positive integers r and s, 𝓖(n;r,s) denotes to the class of graphs on n vertices containing no r of s-edge disjoint cycles and f(n;r,s) = max{𝓔(G):G ∈ 𝓖(n;r,s)}. In this paper, for integers r ≥ 2 and k ≥ 1, we determine f(n;r,2k+1) and characterize the edge maximal members in 𝓖(n;r,2k+1).
LA - eng
KW - extremal graphs; edge disjoint; cycles
UR - http://eudml.org/doc/270966
ER -
References
top- [1] M.S. Bataineh, Some Extremal Problems in Graph Theory, Ph.D Thesis, Curtin University of Technology (Australia, 2007).
- [2] M.S. Bataineh and M.M.M. Jaradat, Edge maximal C₃ and C₅-edge disjoint free graphs, International J. Math. Combin. 1 (2011) 82-87. Zbl1230.05171
- [3] J. Bondy, Large cycle in graphs, Discrete Math. 1 (1971) 121-132, doi: 10.1016/0012-365X(71)90019-7. Zbl0224.05120
- [4] J. Bondy, Pancyclic graphs, J. Combin. Theory (B) 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5. Zbl0183.52301
- [5] J. Bondy and U. Murty, Graph Theory with Applications (The MacMillan Press, London, 1976). Zbl1226.05083
- [6] S. Brandt, A sufficient condition for all short cycles, Discrete Appl. Math. 79 (1997) 63-66, doi: 10.1016/S0166-218X(97)00032-2. Zbl0882.05081
- [7] L. Caccetta, A problem in extremal graph theory, Ars Combin. 2 (1976) 33-56. Zbl0349.05119
- [8] L. Caccetta and R. Jia, Edge maximal non-bipartite Hamiltonian graphs without cycles of length 5, Technical Report.14/97. School of Mathematics and Statistics, Curtin University of Technology (Australia, 1997).
- [9] L. Caccetta and R. Jia, Edge maximal non-bipartite graphs without odd cycles of prescribed length, Graphs and Combin. 18 (2002) 75-92, doi: 10.1007/s003730200004. Zbl0997.05050
- [10] Z. Füredi, On the number of edges of quadrilateral-free graphs, J. Combin. Theory (B) 68 (1996) 1-6, doi: 10.1006/jctb.1996.0052. Zbl0858.05063
- [11] R. Jia, Some Extremal Problems in Graph Theory, Ph.D Thesis, Curtin University of Technology (Australia, 1998).
- [12] P. Turán, On a problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.