The projective plane crossing number of the circulant graph C(3k;{1,k})
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 1, page 91-108
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topPak Tung Ho. "The projective plane crossing number of the circulant graph C(3k;{1,k})." Discussiones Mathematicae Graph Theory 32.1 (2012): 91-108. <http://eudml.org/doc/270982>.
@article{PakTungHo2012,
abstract = {In this paper we prove that the projective plane crossing number of the circulant graph C(3k;\{1,k\}) is k-1 for k ≥ 4, and is 1 for k = 3.},
author = {Pak Tung Ho},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {crossing number; circulant graph; projective plane},
language = {eng},
number = {1},
pages = {91-108},
title = {The projective plane crossing number of the circulant graph C(3k;\{1,k\})},
url = {http://eudml.org/doc/270982},
volume = {32},
year = {2012},
}
TY - JOUR
AU - Pak Tung Ho
TI - The projective plane crossing number of the circulant graph C(3k;{1,k})
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 1
SP - 91
EP - 108
AB - In this paper we prove that the projective plane crossing number of the circulant graph C(3k;{1,k}) is k-1 for k ≥ 4, and is 1 for k = 3.
LA - eng
KW - crossing number; circulant graph; projective plane
UR - http://eudml.org/doc/270982
ER -
References
top- [1] S.N. Bhatt and F.T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. System Sci. 28 (1984) 300-343, doi: 10.1016/0022-0000(84)90071-0. Zbl0543.68052
- [2] P. Erdös, and R.K. Guy, Crossing number problems, Amer. Math. Monthly 80 (1973) 52-58, doi: 10.2307/2319261. Zbl0264.05109
- [3] M.R. Garey and D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 1 (1983) 312-316, doi: 10.1137/0604033. Zbl0536.05016
- [4] R.K. Guy and T.A. Jenkyns, The toroidal crossing number of , J. Combin. Theory 6 (1969) 235-250, doi: 10.1016/S0021-9800(69)80084-0. Zbl0176.22303
- [5] R.K. Guy, T. Jenkyns and J. Schaer, The toroidal crossing number of the complete graph, J. Combin. Theory 4 (1968) 376-390, doi: 10.1016/S0021-9800(68)80063-8. Zbl0172.48804
- [6] P. Hliněný, Crossing number is hard for cubic graphs, J. Combin. Theory (B) 96 (2006) 455-471, doi: 10.1016/j.jctb.2005.09.009. Zbl1092.05016
- [7] P.T. Ho, A proof of the crossing number of in a surface, Discuss. Math. Graph Theory 27 (2007) 549-551, doi: 10.7151/dmgt.1379. Zbl1142.05018
- [8] P.T. Ho, The crossing number of C(3k+1;{1,k}), Discrete Math. 307 (2007) 2771-2774, doi: 10.1016/j.disc.2007.02.001. Zbl1129.05012
- [9] P.T. Ho, The crossing number of on the projective plane, Discrete Math. 304 (2005) 23-34, doi: 10.1016/j.disc.2005.09.010. Zbl1079.05026
- [10] P.T. Ho, The toroidal crossing number of , Discrete Math. 309 (2009) 3238-3248, doi: 10.1016/j.disc.2008.09.029. Zbl1177.05032
- [11] D.J. Kleitman, The crossing number of , J. Combin. Theory 9 (1970) 315-323, doi: 10.1016/S0021-9800(70)80087-4. Zbl0205.54401
- [12] X. Lin, Y. Yang, J. Lu and X. Hao, The crossing number of C(mk;{1,k}), Graphs Combin. 21 (2005) 89-96, doi: 10.1007/s00373-004-0597-5. Zbl1061.05027
- [13] X. Lin, Y. Yang, J. Lu and X. Hao, The crossing number of C(n;{1,⌊ n/2⌋-1}), Util. Math. 71 (2006) 245-255. Zbl1109.05035
- [14] D. Ma, H. Ren and J. Lu, The crossing number of the circular graph C(2m+2,m), Discrete Math. 304 (2005) 88-93, doi: 10.1016/j.disc.2005.04.018. Zbl1077.05033
- [15] B. Mohar and C. Thomassen, Graphs on Surfaces (Johns Hopkins University Press, Baltimore, 2001).
- [16] S. Pan and R.B. Richter, The crossing number of is 100, J. Graph Theory 56 (2007) 128-134, doi: 10.1002/jgt.20249. Zbl1128.05018
- [17] R.B. Richter and J. Širáň, The crossing number of in a surface, J. Graph Theory 21 (1996) 51-54, doi: 10.1002/(SICI)1097-0118(199601)21:1<51::AID-JGT7>3.0.CO;2-L Zbl0838.05033
- [18] A. Riskin, The genus 2 crossing number of K₉, Discrete Math. 145 (1995) 211-227, doi: 10.1016/0012-365X(94)00037-J. Zbl0833.05027
- [19] A. Riskin, The projective plane crossing number of C₃ × Cₙ, J. Graph Theory 17 (1993) 683-693, doi: 10.1002/jgt.3190170605. Zbl0794.05021
- [20] G. Salazar, On the crossing numbers of loop networks and generalized Petersen graphs, Discrete Math. 302 (2005) 243-253, doi: 10.1016/j.disc.2004.07.036. Zbl1080.05026
- [21] L.A. Székely, A successful concept for measuring non-planarity of graphs: the crossing number, Discrete Math. 276 (2004) 331-352, doi: 10.1016/S0012-365X(03)00317-0. Zbl1035.05034
- [22] D.R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing number conjecture, J. Graph Theory 17 (1993) 657-671, doi: 10.1002/jgt.3190170602. Zbl0792.05142
- [23] Y. Yang, X. Lin, J. Lu and X. Hao, The crossing number of C(n;{1,3}), Discrete Math. 289 (2004) 107-118, doi: 10.1016/j.disc.2004.08.014. Zbl1056.05043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.