The projective plane crossing number of the circulant graph C(3k;{1,k})

Pak Tung Ho

Discussiones Mathematicae Graph Theory (2012)

  • Volume: 32, Issue: 1, page 91-108
  • ISSN: 2083-5892

Abstract

top
In this paper we prove that the projective plane crossing number of the circulant graph C(3k;{1,k}) is k-1 for k ≥ 4, and is 1 for k = 3.

How to cite

top

Pak Tung Ho. "The projective plane crossing number of the circulant graph C(3k;{1,k})." Discussiones Mathematicae Graph Theory 32.1 (2012): 91-108. <http://eudml.org/doc/270982>.

@article{PakTungHo2012,
abstract = {In this paper we prove that the projective plane crossing number of the circulant graph C(3k;\{1,k\}) is k-1 for k ≥ 4, and is 1 for k = 3.},
author = {Pak Tung Ho},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {crossing number; circulant graph; projective plane},
language = {eng},
number = {1},
pages = {91-108},
title = {The projective plane crossing number of the circulant graph C(3k;\{1,k\})},
url = {http://eudml.org/doc/270982},
volume = {32},
year = {2012},
}

TY - JOUR
AU - Pak Tung Ho
TI - The projective plane crossing number of the circulant graph C(3k;{1,k})
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 1
SP - 91
EP - 108
AB - In this paper we prove that the projective plane crossing number of the circulant graph C(3k;{1,k}) is k-1 for k ≥ 4, and is 1 for k = 3.
LA - eng
KW - crossing number; circulant graph; projective plane
UR - http://eudml.org/doc/270982
ER -

References

top
  1. [1] S.N. Bhatt and F.T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. System Sci. 28 (1984) 300-343, doi: 10.1016/0022-0000(84)90071-0. Zbl0543.68052
  2. [2] P. Erdös, and R.K. Guy, Crossing number problems, Amer. Math. Monthly 80 (1973) 52-58, doi: 10.2307/2319261. Zbl0264.05109
  3. [3] M.R. Garey and D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 1 (1983) 312-316, doi: 10.1137/0604033. Zbl0536.05016
  4. [4] R.K. Guy and T.A. Jenkyns, The toroidal crossing number of K m , n , J. Combin. Theory 6 (1969) 235-250, doi: 10.1016/S0021-9800(69)80084-0. Zbl0176.22303
  5. [5] R.K. Guy, T. Jenkyns and J. Schaer, The toroidal crossing number of the complete graph, J. Combin. Theory 4 (1968) 376-390, doi: 10.1016/S0021-9800(68)80063-8. Zbl0172.48804
  6. [6] P. Hliněný, Crossing number is hard for cubic graphs, J. Combin. Theory (B) 96 (2006) 455-471, doi: 10.1016/j.jctb.2005.09.009. Zbl1092.05016
  7. [7] P.T. Ho, A proof of the crossing number of K 3 , n in a surface, Discuss. Math. Graph Theory 27 (2007) 549-551, doi: 10.7151/dmgt.1379. Zbl1142.05018
  8. [8] P.T. Ho, The crossing number of C(3k+1;{1,k}), Discrete Math. 307 (2007) 2771-2774, doi: 10.1016/j.disc.2007.02.001. Zbl1129.05012
  9. [9] P.T. Ho, The crossing number of K 4 , n on the projective plane, Discrete Math. 304 (2005) 23-34, doi: 10.1016/j.disc.2005.09.010. Zbl1079.05026
  10. [10] P.T. Ho, The toroidal crossing number of K 4 , n , Discrete Math. 309 (2009) 3238-3248, doi: 10.1016/j.disc.2008.09.029. Zbl1177.05032
  11. [11] D.J. Kleitman, The crossing number of K 5 , n , J. Combin. Theory 9 (1970) 315-323, doi: 10.1016/S0021-9800(70)80087-4. Zbl0205.54401
  12. [12] X. Lin, Y. Yang, J. Lu and X. Hao, The crossing number of C(mk;{1,k}), Graphs Combin. 21 (2005) 89-96, doi: 10.1007/s00373-004-0597-5. Zbl1061.05027
  13. [13] X. Lin, Y. Yang, J. Lu and X. Hao, The crossing number of C(n;{1,⌊ n/2⌋-1}), Util. Math. 71 (2006) 245-255. Zbl1109.05035
  14. [14] D. Ma, H. Ren and J. Lu, The crossing number of the circular graph C(2m+2,m), Discrete Math. 304 (2005) 88-93, doi: 10.1016/j.disc.2005.04.018. Zbl1077.05033
  15. [15] B. Mohar and C. Thomassen, Graphs on Surfaces (Johns Hopkins University Press, Baltimore, 2001). 
  16. [16] S. Pan and R.B. Richter, The crossing number of K 11 is 100, J. Graph Theory 56 (2007) 128-134, doi: 10.1002/jgt.20249. Zbl1128.05018
  17. [17] R.B. Richter and J. Širáň, The crossing number of K 3 , n in a surface, J. Graph Theory 21 (1996) 51-54, doi: 10.1002/(SICI)1097-0118(199601)21:1<51::AID-JGT7>3.0.CO;2-L Zbl0838.05033
  18. [18] A. Riskin, The genus 2 crossing number of K₉, Discrete Math. 145 (1995) 211-227, doi: 10.1016/0012-365X(94)00037-J. Zbl0833.05027
  19. [19] A. Riskin, The projective plane crossing number of C₃ × Cₙ, J. Graph Theory 17 (1993) 683-693, doi: 10.1002/jgt.3190170605. Zbl0794.05021
  20. [20] G. Salazar, On the crossing numbers of loop networks and generalized Petersen graphs, Discrete Math. 302 (2005) 243-253, doi: 10.1016/j.disc.2004.07.036. Zbl1080.05026
  21. [21] L.A. Székely, A successful concept for measuring non-planarity of graphs: the crossing number, Discrete Math. 276 (2004) 331-352, doi: 10.1016/S0012-365X(03)00317-0. Zbl1035.05034
  22. [22] D.R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing number conjecture, J. Graph Theory 17 (1993) 657-671, doi: 10.1002/jgt.3190170602. Zbl0792.05142
  23. [23] Y. Yang, X. Lin, J. Lu and X. Hao, The crossing number of C(n;{1,3}), Discrete Math. 289 (2004) 107-118, doi: 10.1016/j.disc.2004.08.014. Zbl1056.05043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.