A magical approach to some labeling conjectures
Ramon M. Figueroa-Centeno; Rikio Ichishima; Francesc A. Muntaner-Batle; Akito Oshima
Discussiones Mathematicae Graph Theory (2011)
- Volume: 31, Issue: 1, page 79-113
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topRamon M. Figueroa-Centeno, et al. "A magical approach to some labeling conjectures." Discussiones Mathematicae Graph Theory 31.1 (2011): 79-113. <http://eudml.org/doc/270995>.
@article{RamonM2011,
abstract = {In this paper, a complete characterization of the (super) edge-magic linear forests with two components is provided. In the process of establishing this characterization, the super edge-magic, harmonious, sequential and felicitous properties of certain 2-regular graphs are investigated, and several results on super edge-magic and felicitous labelings of unions of cycles and paths are presented. These labelings resolve one conjecture on harmonious graphs as a corollary, and make headway towards the resolution of others. They also provide the basis for some new conjectures (and a weaker form of an old one) on labelings of 2-regular graphs.},
author = {Ramon M. Figueroa-Centeno, Rikio Ichishima, Francesc A. Muntaner-Batle, Akito Oshima},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {edge-magic labelling; edge-magic total labelling; felicitous labelling; harmonious labelling; sequential labelling},
language = {eng},
number = {1},
pages = {79-113},
title = {A magical approach to some labeling conjectures},
url = {http://eudml.org/doc/270995},
volume = {31},
year = {2011},
}
TY - JOUR
AU - Ramon M. Figueroa-Centeno
AU - Rikio Ichishima
AU - Francesc A. Muntaner-Batle
AU - Akito Oshima
TI - A magical approach to some labeling conjectures
JO - Discussiones Mathematicae Graph Theory
PY - 2011
VL - 31
IS - 1
SP - 79
EP - 113
AB - In this paper, a complete characterization of the (super) edge-magic linear forests with two components is provided. In the process of establishing this characterization, the super edge-magic, harmonious, sequential and felicitous properties of certain 2-regular graphs are investigated, and several results on super edge-magic and felicitous labelings of unions of cycles and paths are presented. These labelings resolve one conjecture on harmonious graphs as a corollary, and make headway towards the resolution of others. They also provide the basis for some new conjectures (and a weaker form of an old one) on labelings of 2-regular graphs.
LA - eng
KW - edge-magic labelling; edge-magic total labelling; felicitous labelling; harmonious labelling; sequential labelling
UR - http://eudml.org/doc/270995
ER -
References
top- [1] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math. 150 (1996) 3-15, doi: 10.1016/0012-365X(95)00171-R. Zbl0856.05086
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Wadsworth & Brook/Cole Advanced Books and Software, Monterey, Calif. 1986). Zbl0666.05001
- [3] H. Enomoto, A. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109. Zbl0918.05090
- [4] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168, doi: 10.1016/S0012-365X(00)00314-9. Zbl0977.05120
- [5] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edge-magic graphs, Ars Combin. 64 (2002) 81-96. Zbl1071.05568
- [6] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, Labeling the vertex amalgamation of graphs, Discuss. Math. Graph Theory 23 (2003) 129-139, doi: 10.7151/dmgt.1190. Zbl1054.05087
- [7] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, Austral. J. Combin. 32 (2005) 225-242. Zbl1070.05075
- [8] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On the super edge-magic deficiency of graphs, Ars Combin. 78 (2006) 33-45. Zbl1164.05445
- [9] R.M. Figueroa-Centeno, R. Ichishima, F.A. Muntaner-Batle and M. Rius-Font, Labeling generating matrices, J. Combin. Math. Combin. Comput. 67 (2008) 189-216.
- [10] R. Frucht and L.C. Salinas, Graceful numbering of snakes with constraints on the first label, Ars Combin. (B) 20 (1985) 143-157. Zbl0594.05057
- [11] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (2009) #DS6. Zbl0953.05067
- [12] S.W. Golomb, How to number a graph, in: Graph Theory and Computing, R.C. Read, ed. (Academic Press, New York, 1972) 23-37. Zbl0293.05150
- [13] T. Grace, On sequential labelings of graphs, J. Graph Theory 7 (1983) 195-201, doi: 10.1002/jgt.3190070208. Zbl0522.05063
- [14] R.L. Graham and N.J. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth. 1 (1980) 382-404, doi: 10.1137/0601045. Zbl0499.05049
- [15] I. Gray and J.A. MacDougall, Vertex-magic labelings of regular graphs II, Discrete Math. 309 (2009) 5986-5999, doi: 10.1016/j.disc.2009.04.031. Zbl1226.05214
- [16] J. Holden, D. McQuillan and J.M. McQuillan, A conjecture on strong magic labelings of 2-regular graphs, Discrete Math. 309 (2009) 4130-4136, doi: 10.1016/j.disc.2008.12.020. Zbl1228.05314
- [17] A. Kotzig, β-valuations of quadratic graphs with isomorphic components, Utilitas Math. 7 (1975) 263-279.
- [18] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1. Zbl0213.26203
- [19] S.M. Lee, E. Schmeichel and S.C. Shee, On felicitous graphs, Discrete Math. 93 (1991) 201-209, doi: 10.1016/0012-365X(91)90256-2. Zbl0741.05059
- [20] M. Seoud, A.E.I. Abdel Maqsoud and J. Sheehan, Harmonious graphs, Utilitas Math. 47 (1995) 225-233. Zbl0830.05055
- [21] S.C. Shee, On harmonious and related graphs, Ars Combin. 23 (1987) 237-247. Zbl0616.05055
- [22] S.C. Shee and S.M. Lee, On harmonious and felicitous labelings of graphs, Congress Numer. 68 (1989) 155-170. Zbl0689.05045
- [23] G. Ringel and A. Lladó, Another tree conjecture, Bull. Inst. Combin. Appl. 18 (1996) 83-85.
- [24] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y and Dunod Paris (1967) 349-355.
- [25] W.D. Wallis, Magic Graphs (Birkhäuser, Boston, 2001), doi: 10.1007/978-1-4612-0123-6. Zbl0979.05001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.