A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topXiangui Zhao, and Yang Zhang. "A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/270998>.
@article{XianguiZhao2015,
abstract = {Signature-based algorithms are efficient algorithms for computing Gröbner-Shirshov bases in commutative polynomial rings, and some noncommutative rings. In this paper, we first define skew solvable polynomial rings, which are generalizations of solvable polynomial algebras and (skew) PBW extensions. Then we present a signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings over fields.},
author = {Xiangui Zhao, Yang Zhang},
journal = {Open Mathematics},
keywords = {Gröbner-Shirshov basis; Skew solvable polynomial ring; Signature-based algorithm},
language = {eng},
number = {1},
pages = {null},
title = {A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings},
url = {http://eudml.org/doc/270998},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Xiangui Zhao
AU - Yang Zhang
TI - A signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - Signature-based algorithms are efficient algorithms for computing Gröbner-Shirshov bases in commutative polynomial rings, and some noncommutative rings. In this paper, we first define skew solvable polynomial rings, which are generalizations of solvable polynomial algebras and (skew) PBW extensions. Then we present a signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings over fields.
LA - eng
KW - Gröbner-Shirshov basis; Skew solvable polynomial ring; Signature-based algorithm
UR - http://eudml.org/doc/270998
ER -
References
top- [1] Adams W. W. and Loustaunau P., An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, 1994. Zbl0803.13015
- [2] Bokut’ L. A., Chen Y., and Shum K. P., Some new results on Gröbner-Shirshov bases, Proceedings of International Conference on Algebra 2010–Advances in Algebraic Structures (W. Hemakul, S. Wahyuni, and P. W. Sy, eds.), 2012, pp. 53–102. Zbl1264.16025
- [3] Buchberger B., Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensionalen polynomideal, Ph.D. thesis, University of Innsbruck, 1965.
- [4] Bueso J. L., Gómez-Torrecillas J., and Verschoren A., Algorithmic methods in non-commutative algebra: Applications to quantum groups, Mathematical Modelling: Theory and Applications, vol. 17, Springer, 2003. Zbl1063.16054
- [5] Chyzak F. and Salvy B., Non-commutative elimination in Ore algebras proves multivariate identities, J. Symbolic Comput. 26 (1998), no. 2, 187–227. Zbl0944.05006
- [6] Faugère J. C., A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra 139 (1999), no. 1, 61–88. Zbl0930.68174
- [7] Faugère J. C., A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM, 2002, pp. 75–83. Zbl1072.68664
- [8] Gallego C. and Lezama O., Gröbner bases for ideals of σ-PBW extensions, Comm. Algebra 39 (2011), no. 1, 50–75. [WoS] Zbl1259.16053
- [9] Galligo A., Some algorithmic questions on ideals of differential operators, EUROCAL’85, Springer, 1985, pp. 413–421. Zbl0634.16001
- [10] Gao S., Guan Y., and Volny IV F., A new incremental algorithm for computing Gröbner bases, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ACM, 2010, pp. 13–19. Zbl1321.68531
- [11] Gao S., Volny IV F., and Wang M., A new algorithm for computing Gröbner bases, Cryptology ePrint Archive (2010). Zbl1331.13018
- [12] Giesbrecht M., Reid G., and Zhang Y., Non-commutative Gröbner bases in Poincaré-Birkhoff-Witt extensions, Computer Algebra in Scientific Computing (CASC), 2002.
- [13] Insa M. and Pauer F., Gröbner bases in rings of differential operators, London Math. Soc. Lecture Note Ser. (1998), 367–380. Zbl0945.13021
- [14] Kandri-Rody A. and Weispfenning V., Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), no. 1, 1–26. Zbl0715.16010
- [15] Levandovskyy V. and Schönemann H., Plural: a computer algebra system for noncommutative polynomial algebras, Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ACM, 2003, pp. 176–183. Zbl1072.68681
- [16] Ma X., Sun Y., and Wang D., On computing Gröbner bases in rings of differential operators, Sci. China Math. 54 (2011), no. 6, 1077–1087. Zbl1236.13010
- [17] Mansfield E. L. and Szanto A., Elimination theory for differential difference polynomials, Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ACM, 2003, pp. 191–198. Zbl1072.68684
- [18] Oh S.-Q., Catenarity in a class of iterated skew polynomial rings, Comm. Algebra 25 (1997), no. 1, 37–49. Zbl0872.16018
- [19] Shirshov A. I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Zh. 3 (1962), no. 2, 292–296. Zbl0104.26004
- [20] Sun Y., Wang D., Ma X., and Zhang Y., A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras, Proceedings of the 2012 International Symposium on Symbolic and Algebraic Computation, ACM, 2012, pp. 351–358. Zbl1308.68193
- [21] Zhang Y. and Zhao X., Gelfand-Kirillov dimension of differential difference algebras, LMS J. Comput. Math. 17 (2014), no. 1, 485– 495.
- [22] Zhou M. and Winkler F., On computing Gröbner bases in rings of differential operators with coefficients in a ring, Math. Comput. Sci. 1 (2007), no. 2, 211–223. Zbl1132.68075
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.