Dependence Measuring from Conditional Variances

Noppadon Kamnitui; Tippawan Santiwipanont; Songkiat Sumetkijakan

Dependence Modeling (2015)

  • Volume: 3, Issue: 1, page 98-112, electronic only
  • ISSN: 2300-2298

Abstract

top
A conditional variance is an indicator of the level of independence between two random variables. We exploit this intuitive relationship and define a measure v which is almost a measure of mutual complete dependence. Unsurprisingly, the measure attains its minimum value for many pairs of non-independent ran- dom variables. Adjusting the measure so as to make it invariant under all Borel measurable injective trans- formations, we obtain a copula-based measure of dependence v* satisfying A. Rényi’s postulates. Finally, we observe that every nontrivial convex combination of v and v* is a measure of mutual complete dependence.

How to cite

top

Noppadon Kamnitui, Tippawan Santiwipanont, and Songkiat Sumetkijakan. "Dependence Measuring from Conditional Variances." Dependence Modeling 3.1 (2015): 98-112, electronic only. <http://eudml.org/doc/271033>.

@article{NoppadonKamnitui2015,
abstract = {A conditional variance is an indicator of the level of independence between two random variables. We exploit this intuitive relationship and define a measure v which is almost a measure of mutual complete dependence. Unsurprisingly, the measure attains its minimum value for many pairs of non-independent ran- dom variables. Adjusting the measure so as to make it invariant under all Borel measurable injective trans- formations, we obtain a copula-based measure of dependence v* satisfying A. Rényi’s postulates. Finally, we observe that every nontrivial convex combination of v and v* is a measure of mutual complete dependence.},
author = {Noppadon Kamnitui, Tippawan Santiwipanont, Songkiat Sumetkijakan},
journal = {Dependence Modeling},
keywords = {conditional variances; measures of dependence; copulas; mutual complete dependence; shuffles of Min; shuffles of Min},
language = {eng},
number = {1},
pages = {98-112, electronic only},
title = {Dependence Measuring from Conditional Variances},
url = {http://eudml.org/doc/271033},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Noppadon Kamnitui
AU - Tippawan Santiwipanont
AU - Songkiat Sumetkijakan
TI - Dependence Measuring from Conditional Variances
JO - Dependence Modeling
PY - 2015
VL - 3
IS - 1
SP - 98
EP - 112, electronic only
AB - A conditional variance is an indicator of the level of independence between two random variables. We exploit this intuitive relationship and define a measure v which is almost a measure of mutual complete dependence. Unsurprisingly, the measure attains its minimum value for many pairs of non-independent ran- dom variables. Adjusting the measure so as to make it invariant under all Borel measurable injective trans- formations, we obtain a copula-based measure of dependence v* satisfying A. Rényi’s postulates. Finally, we observe that every nontrivial convex combination of v and v* is a measure of mutual complete dependence.
LA - eng
KW - conditional variances; measures of dependence; copulas; mutual complete dependence; shuffles of Min; shuffles of Min
UR - http://eudml.org/doc/271033
ER -

References

top
  1. [1] V.I. Bogachev, Measure Theory, vol I, Springer Verlag, 2007. 
  2. [2] N. Chaidee, T. Santiwipanont, S. Sumetkijakan, Patched approximations and their convergence, Comm. Statist. Theory Methods, in press, http://dx.doi.org/10.1080/03610926.2014.887112. [Crossref] Zbl06600068
  3. [3] W.F. Darsow, B. Nguyen, E.T. Olsen, Copulas and Markov processes, Illinois J. Math. 36 (1992) 600–642. Zbl0770.60019
  4. [4] W.F. Darsow, E.T. Olsen, Norms for copulas, Int. J. Math. Math. Sci. 18 (1995) 417–436. [Crossref] Zbl0827.46011
  5. [5] W.F. Darsow, E.T. Olsen, Characterization of idempotent 2-copulas, Note Mat. 30 (2010) 147–177. Zbl1238.60042
  6. [6] F. Durante, E.P. Klement, J.J. Quesada-Molina, P. Sarkoci, Remarks on two product-like constructions for copulas, Kyber- netika (Prague) 43 (2007) 235–244. Zbl1136.60306
  7. [7] F. Durante, P. Sarkoci, C. Sempi, Shuffles of copulas, J. Math. Anal. Appl. 352 (2009) 914–921. Zbl1160.60307
  8. [8] H. Gebelein, Das statistische Problem der Korrelation als Variations und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung, Z. Angew. Math. Mech. 21 (1941) 364–379. [Crossref] Zbl0026.33402
  9. [9] N. Kamnitui, New Measure of Dependence from Conditional Variances, Master thesis, 2015. Zbl06534015
  10. [10] H.O. Lancaster, Correlation and complete dependence of random variables, Ann. Math. Statist. 34 (1963) 1315–1321. [Crossref] Zbl0121.35905
  11. [11] P. Mikusiński, H. Sherwood, M.D. Taylor, Probabilistic interpretations of copulas and their convex sums, in: G. Dall’Aglio, S. Kotz, G. Salinetti (Eds.), Advances in Probability Distributionswith GivenMarginals: Beyond the Copulas, Kluwer Dordrecht. 67 (1991) 95–112. Zbl0733.60023
  12. [12] P. Mikusiński, H. Sherwood, M.D. Taylor, Shuffles of min, Stochastica 13 (1992) 61–74. Zbl0768.60017
  13. [13] R.B. Nelsen, An Introduction to Copulas, second ed., Springer Verlag, 2006. Zbl1152.62030
  14. [14] K. Pearson, D. Heron, On theories of association, Biometrika 9(1/2) (1913) 159–315. [Crossref] 
  15. [15] E.T. Olsen, W.F. Darsow, B. Nguyen, Copulas and Markov operators, Lecture Notes-Monograph Series 28 (1996) 244–259. 
  16. [16] A. Rényi, On measures of dependence, Acta. Math. Acad. Sci. Hungar. 10 (1959) 441–451. [Crossref] Zbl0091.14403
  17. [17] P. Ruankong, T. Santiwipanont, S. Sumetkijakan, Shuffles of copulas and a new measure of dependence, J.Math. Anal. Appl. 398(1) (2013) 398–402. Zbl06112322
  18. [18] B. Schweizer, E.F. Wolff, On nonparametric measures of dependence for random variables, Ann. Statist. 9 (1981) 879–885. [Crossref] Zbl0468.62012
  19. [19] K.F. Siburg, P.A. Stoimenov, A scalar product for copulas, J. Math. Anal. Appl. 344 (2008) 429–439. Zbl1151.46023
  20. [20] K.F. Siburg, P.A. Stoimenov, A measure of mutual complete dependence, Metrika 71 (2009) 239–251. [Crossref][WoS] Zbl1182.62124
  21. [21] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959) 229–231. Zbl0100.14202
  22. [22] W. Trutschnig, On a strong metric on the space of copulas and its induced dependence measure, J. Math. Anal. Appl. 384 (2011) 690–705. [WoS] Zbl1252.46019
  23. [23] W. Trutschnig, On Cesaro convergence of iterates of the star product of copulas, Stat. Prob. Letters 83 (2013) 357–365. [WoS][Crossref] Zbl1282.62148
  24. [24] Y. Zheng, J. Yang, J.Z. Huang, Approximation of bivariate copulas by patched bivariate Fréchet copulas, Insurance Math. Econ. 48 (2011) 246–256. [Crossref] Zbl1232.62081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.