Dependence Measuring from Conditional Variances
Noppadon Kamnitui; Tippawan Santiwipanont; Songkiat Sumetkijakan
Dependence Modeling (2015)
- Volume: 3, Issue: 1, page 98-112, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topNoppadon Kamnitui, Tippawan Santiwipanont, and Songkiat Sumetkijakan. "Dependence Measuring from Conditional Variances." Dependence Modeling 3.1 (2015): 98-112, electronic only. <http://eudml.org/doc/271033>.
@article{NoppadonKamnitui2015,
abstract = {A conditional variance is an indicator of the level of independence between two random variables. We exploit this intuitive relationship and define a measure v which is almost a measure of mutual complete dependence. Unsurprisingly, the measure attains its minimum value for many pairs of non-independent ran- dom variables. Adjusting the measure so as to make it invariant under all Borel measurable injective trans- formations, we obtain a copula-based measure of dependence v* satisfying A. Rényi’s postulates. Finally, we observe that every nontrivial convex combination of v and v* is a measure of mutual complete dependence.},
author = {Noppadon Kamnitui, Tippawan Santiwipanont, Songkiat Sumetkijakan},
journal = {Dependence Modeling},
keywords = {conditional variances; measures of dependence; copulas; mutual complete dependence; shuffles
of Min; shuffles of Min},
language = {eng},
number = {1},
pages = {98-112, electronic only},
title = {Dependence Measuring from Conditional Variances},
url = {http://eudml.org/doc/271033},
volume = {3},
year = {2015},
}
TY - JOUR
AU - Noppadon Kamnitui
AU - Tippawan Santiwipanont
AU - Songkiat Sumetkijakan
TI - Dependence Measuring from Conditional Variances
JO - Dependence Modeling
PY - 2015
VL - 3
IS - 1
SP - 98
EP - 112, electronic only
AB - A conditional variance is an indicator of the level of independence between two random variables. We exploit this intuitive relationship and define a measure v which is almost a measure of mutual complete dependence. Unsurprisingly, the measure attains its minimum value for many pairs of non-independent ran- dom variables. Adjusting the measure so as to make it invariant under all Borel measurable injective trans- formations, we obtain a copula-based measure of dependence v* satisfying A. Rényi’s postulates. Finally, we observe that every nontrivial convex combination of v and v* is a measure of mutual complete dependence.
LA - eng
KW - conditional variances; measures of dependence; copulas; mutual complete dependence; shuffles
of Min; shuffles of Min
UR - http://eudml.org/doc/271033
ER -
References
top- [1] V.I. Bogachev, Measure Theory, vol I, Springer Verlag, 2007.
- [2] N. Chaidee, T. Santiwipanont, S. Sumetkijakan, Patched approximations and their convergence, Comm. Statist. Theory Methods, in press, http://dx.doi.org/10.1080/03610926.2014.887112. [Crossref] Zbl06600068
- [3] W.F. Darsow, B. Nguyen, E.T. Olsen, Copulas and Markov processes, Illinois J. Math. 36 (1992) 600–642. Zbl0770.60019
- [4] W.F. Darsow, E.T. Olsen, Norms for copulas, Int. J. Math. Math. Sci. 18 (1995) 417–436. [Crossref] Zbl0827.46011
- [5] W.F. Darsow, E.T. Olsen, Characterization of idempotent 2-copulas, Note Mat. 30 (2010) 147–177. Zbl1238.60042
- [6] F. Durante, E.P. Klement, J.J. Quesada-Molina, P. Sarkoci, Remarks on two product-like constructions for copulas, Kyber- netika (Prague) 43 (2007) 235–244. Zbl1136.60306
- [7] F. Durante, P. Sarkoci, C. Sempi, Shuffles of copulas, J. Math. Anal. Appl. 352 (2009) 914–921. Zbl1160.60307
- [8] H. Gebelein, Das statistische Problem der Korrelation als Variations und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung, Z. Angew. Math. Mech. 21 (1941) 364–379. [Crossref] Zbl0026.33402
- [9] N. Kamnitui, New Measure of Dependence from Conditional Variances, Master thesis, 2015. Zbl06534015
- [10] H.O. Lancaster, Correlation and complete dependence of random variables, Ann. Math. Statist. 34 (1963) 1315–1321. [Crossref] Zbl0121.35905
- [11] P. Mikusiński, H. Sherwood, M.D. Taylor, Probabilistic interpretations of copulas and their convex sums, in: G. Dall’Aglio, S. Kotz, G. Salinetti (Eds.), Advances in Probability Distributionswith GivenMarginals: Beyond the Copulas, Kluwer Dordrecht. 67 (1991) 95–112. Zbl0733.60023
- [12] P. Mikusiński, H. Sherwood, M.D. Taylor, Shuffles of min, Stochastica 13 (1992) 61–74. Zbl0768.60017
- [13] R.B. Nelsen, An Introduction to Copulas, second ed., Springer Verlag, 2006. Zbl1152.62030
- [14] K. Pearson, D. Heron, On theories of association, Biometrika 9(1/2) (1913) 159–315. [Crossref]
- [15] E.T. Olsen, W.F. Darsow, B. Nguyen, Copulas and Markov operators, Lecture Notes-Monograph Series 28 (1996) 244–259.
- [16] A. Rényi, On measures of dependence, Acta. Math. Acad. Sci. Hungar. 10 (1959) 441–451. [Crossref] Zbl0091.14403
- [17] P. Ruankong, T. Santiwipanont, S. Sumetkijakan, Shuffles of copulas and a new measure of dependence, J.Math. Anal. Appl. 398(1) (2013) 398–402. Zbl06112322
- [18] B. Schweizer, E.F. Wolff, On nonparametric measures of dependence for random variables, Ann. Statist. 9 (1981) 879–885. [Crossref] Zbl0468.62012
- [19] K.F. Siburg, P.A. Stoimenov, A scalar product for copulas, J. Math. Anal. Appl. 344 (2008) 429–439. Zbl1151.46023
- [20] K.F. Siburg, P.A. Stoimenov, A measure of mutual complete dependence, Metrika 71 (2009) 239–251. [Crossref][WoS] Zbl1182.62124
- [21] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959) 229–231. Zbl0100.14202
- [22] W. Trutschnig, On a strong metric on the space of copulas and its induced dependence measure, J. Math. Anal. Appl. 384 (2011) 690–705. [WoS] Zbl1252.46019
- [23] W. Trutschnig, On Cesaro convergence of iterates of the star product of copulas, Stat. Prob. Letters 83 (2013) 357–365. [WoS][Crossref] Zbl1282.62148
- [24] Y. Zheng, J. Yang, J.Z. Huang, Approximation of bivariate copulas by patched bivariate Fréchet copulas, Insurance Math. Econ. 48 (2011) 246–256. [Crossref] Zbl1232.62081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.