Two bounds on the noncommuting graph
Stefano Nardulli; Francesco G. Russo
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Abdollahi A., Akbari S., Maimani H.R., Non-commuting graph of a group, J. Algebra, 2006, 298, 468–492 Zbl1105.20016
- [2] Ambrosio L., Gigli N., Mondino A., Rajala T., Riemannian Ricci curvature lower bounds in metric measure spaces with σ–finite measure, Trans. Amer. Math. Soc. (in press), preprint available at http://arxiv.org/pdf/1207.4924v2.pdf Zbl1317.53060
- [3] Ambrosio L., Mondino A., Savaré G., On the Bakry–Émery condition, the gradient estimates and the Local–to–Global property of RCD*(k, n) metric measure spaces, J. Geom. Anal. (in press), preprint available at http://arxiv.org/pdf/1309.4664v1.pdf Zbl1335.35088
- [4] Aubin T., Nonlinear analysis on manifolds: Monge–Ampére equations, Grundlehren der Mathematischen Wissenschaften, 252, Springer, Berlin, 1982 Zbl0512.53044
- [5] Bakry D., Coulhon T., Ledoux M., Saloff–Coste L., Sobolev inequalities in disguise, Indiana Univ. Math. J., 1995, 44, 1033–1074
- [6] Chung F.R.K., Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, AMS publications, New York, 1996
- [7] Chung F.R.K., Grigor’yan A., Yau S.T., Higher eigenvalues and isoperimetric inequalities on riemannian manifolds and graphs, Comm. Anal. Geom., 2000, 8, 969–1026 Zbl1001.58022
- [8] Chung F.R.K., Discrete isoperimetric inequalities, In: Surveys in differential geometry, Vol. IX, Int. Press, Somerville, MA, 2004, 53–82 Zbl1067.53025
- [9] Darafsheh M.R., Groups with the same non-commuting graph, Discrete Appl. Math., 2009, 157, 833–837 [WoS] Zbl1184.20023
- [10] Hebey E., Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, Vol.5, New York University Courant Institute of Mathematical Sciences, New York, 1999 Zbl0981.58006
- [11] Hofmann K.H., Russo F.G., The probability that x and y commute in a compact group, Math. Proc. Cambridge Phil. Soc., 2012, 153, 557–571 [WoS] Zbl1261.22006
- [12] Hofmann K.H., Russo F.G., The probability that xm and yn commute in a compact group, Bull. Aust. Math. Soc., 2013, 87, 503– 513 [WoS] Zbl1271.22002
- [13] Moghaddamfar A.R., About noncommuting graphs, Siberian Math. J., 2005, 47, 1112–1116 Zbl1139.20019
- [14] Mondino A., Nardulli S., Existence of isoperimetric regions in noncompact riemannian manifolds under Ricci or scalar curvature conditions, Comm. Anal. Geom., preprint available at http://arxiv.org/pdf/1210.0567v1.pdf Zbl06610800
- [15] Nardulli S., The isoperimetric profile of a noncompact Riemannian manifold for small volumes, Calc. Var. PDE, 2014, 49, 173–195 Zbl1293.49107
- [16] Neumann B.H., A problem of Paul Erd˝os on groups, J. Aust. Math. Soc., 1976, 21, 467–472 Zbl0333.05110
- [17] Russo F.G., Problems of connectivity between the Sylow graph, the prime graph and the non-commuting graph of a group, Adv. Pure Math., 2012, 2, 373–378