On maximum likelihood estimation in mixed normal models with two variance components
Discussiones Mathematicae Probability and Statistics (2014)
- Volume: 34, Issue: 1-2, page 187-197
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Christensen, Plane answers to complex questions: the theory of linear models, 4th Edition (Springer, New York, 2011). doi: 10.1007/978-1-4419-9816-3. Zbl1266.62043
- [2] E. Demidenko and H. Massam, On the existence of the maximum likelihood estimate in variance components models, Sankhyā A. Methods and Techniques 61 (1999) 431-443. Zbl0972.62034
- [3] S. Gnot, A. Michalski and A. Urbańska-Motyka, On some properties of ML and REML estimators in mixed normal models with two variance components, Discuss. Math. Prob. and Stat. 24 (2004) 109-126. Zbl1052.62029
- [4] S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, Maximum likelihood estimation in mixed normal models with two variance components, Statistics 36 (2002) 283-302. doi: 10.1080/02331880213197. Zbl1003.62017
- [5] G. Golub and C. Van Loan, Matrix Computations, 4th Edition (The John Hopkins University Press, Baltimore, 2013). Zbl1268.65037
- [6] E. Gross, M. Drton and S. Petrović, Maximum likelihood degree of variance components models, Electronic J. Stat. 6 (2012) 993-1016. doi: 10.1214/12-EJS702. Zbl1281.62159
- [7] M. Grządziel and A. Michalski, A note on the existence of maximum likelihood estimates in variance components models, accepted for publication in Discuss. Math. Prob. and Stat. 2014.
- [8] J. Jiang, Linear and Generalized Linear Mixed Models and Their Applications (Springer, New York, 2007). doi: 10.1007/978-0-387-47946-0. Zbl1152.62040
- [9] A. Olsen, J. Seely and D. Birkes, Invariant quadratic estimation for two variance components, Ann. Stat. 4 (1976) 878-890. doi: 10.1214/aos/1176343586. Zbl0344.62060
- [10] C. R. Rao and J. Kleffe, Estimation of Variance Components and Applications (North Holland, New York, 1988). doi: 10.1002/bimj.4710320518. Zbl0645.62073
- [11] C. R. Rao and H. Toutenburg, Linear Models: Least Squares and Alternatives, 2nd Edition (Springer, New York, 1999). Zbl0846.62049