Clique graph representations of ptolemaic graphs
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 4, page 651-661
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H.-J. Bandelt and E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory (B) 51 (1991) 34-45, doi: 10.1016/0095-8956(91)90004-4. Zbl0726.05060
- [2] B.-L. Chen and K.-W. Lih, Diameters of iterated clique graphs of chordal graphs, J. Graph Theory 14 (1990) 391-396, doi: 10.1002/jgt.3190140311. Zbl0726.05059
- [3] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics (Philadelphia, 1999).
- [4] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981) 323-331, doi: 10.1002/jgt.3190050314. Zbl0437.05046
- [5] T.A. McKee, Maximal connected cographs in distance-hereditary graphs, Utilitas Math. 57 (2000) 73-80. Zbl0953.05024
- [6] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics (Philadelphia, 1999). Zbl0945.05003
- [7] F. Nicolai, A hypertree characterization of distance-hereditary graphs, Tech. Report Gerhard-Mercator-Universität Gesamthochschule (Duisburg SM-DU-255, 1994).
- [8] E. Prisner, Graph Dynamics, Pitman Research Notes in Mathematics Series #338 (Longman, Harlow, 1995).
- [9] J.L. Szwarcfiter, A survey on clique graphs, in: Recent advances in algorithms and combinatorics, pp. 109-136, CMS Books Math./Ouvrages Math. SMC 11 (Springer, New York, 2003). Zbl1027.05071