On the (2,2)-domination number of trees

You Lu; Xinmin Hou; Jun-Ming Xu

Discussiones Mathematicae Graph Theory (2010)

  • Volume: 30, Issue: 2, page 185-199
  • ISSN: 2083-5892

Abstract

top
Let γ(G) and γ 2 , 2 ( G ) denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that ( 2 ( γ ( T ) + 1 ) ) / 3 γ 2 , 2 ( T ) 2 γ ( T ) . Moreover, we characterize all the trees achieving the equalities.

How to cite

top

You Lu, Xinmin Hou, and Jun-Ming Xu. "On the (2,2)-domination number of trees." Discussiones Mathematicae Graph Theory 30.2 (2010): 185-199. <http://eudml.org/doc/271068>.

@article{YouLu2010,
abstract = {Let γ(G) and $γ_\{2,2\}(G)$ denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that $(2(γ(T)+1))/3 ≤ γ_\{2,2\}(T) ≤ 2γ(T)$. Moreover, we characterize all the trees achieving the equalities.},
author = {You Lu, Xinmin Hou, Jun-Ming Xu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {domination number; total domination number; (2,2)-domination number; -domination number},
language = {eng},
number = {2},
pages = {185-199},
title = {On the (2,2)-domination number of trees},
url = {http://eudml.org/doc/271068},
volume = {30},
year = {2010},
}

TY - JOUR
AU - You Lu
AU - Xinmin Hou
AU - Jun-Ming Xu
TI - On the (2,2)-domination number of trees
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 2
SP - 185
EP - 199
AB - Let γ(G) and $γ_{2,2}(G)$ denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that $(2(γ(T)+1))/3 ≤ γ_{2,2}(T) ≤ 2γ(T)$. Moreover, we characterize all the trees achieving the equalities.
LA - eng
KW - domination number; total domination number; (2,2)-domination number; -domination number
UR - http://eudml.org/doc/271068
ER -

References

top
  1. [1] T.J. Bean, M.A. Henning and H.C. Swart, On the integrity of distance domination in graphs, Australas. J. Combin. 10 (1994) 29-43. Zbl0815.05036
  2. [2] G. Chartrant and L. Lesniak, Graphs & Digraphs (third ed., Chapman & Hall, London, 1996). 
  3. [3] M. Fischermann and L. Volkmann, A remark on a conjecture for the (k,p)-domination number, Utilitas Math. 67 (2005) 223-227. Zbl1077.05074
  4. [4] M.A. Henning, Trees with large total domination number, Utilitas Math. 60 (2001) 99-106. Zbl1011.05045
  5. [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998). Zbl0890.05002
  6. [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998). Zbl0883.00011
  7. [7] T. Korneffel, D. Meierling and L. Volkmann, A remark on the (2,2)-domination number Discuss. Math. Graph Theory 28 (2008) 361-366, doi: 10.7151/dmgt.1411. Zbl1156.05044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.