Generalized matrix graphs and completely independent critical cliques in any dimension
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 3, page 583-602
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Balogh, A.V. Kostochka, N. Prince, and M. Stiebitz, The Erdös-Lovász Tihany conjecture for quasi-line graphs, Discrete Math., 309 (2009) 3985-3991, doi: 10.1016/j.disc.2008.11.016. Zbl1184.05039
- [2] R.A. Brualdi, Introductory Combinatorics, 5th ed, Pearson, (Upper Saddle River, 2010).
- [3] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, 5th ed, CRC Press, (Boca Raton, 2010).
- [4] G.A. Dirac, A theorem of R.L. Brooks and a conjecture of H. Hadwiger, Proc. Lond. Math. Soc. (3), 7 (1957) 161-195, doi: 10.1112/plms/s3-7.1.161.
- [5] G.A. Dirac, The number of edges in critical graphs, J. Reine Angew. Math. 268/269 (1974) 150-164. Zbl0298.05119
- [6] P. Erdös, Problems, in: Theory of Graphs, Proc. Colloq., Tihany, (Academic Press, New York, 1968) 361-362.
- [7] T.R. Jensen, Dense critical and vertex-critical graphs, Discrete Math. 258 (2002) 63-84, doi: 10.1016/S0012-365X(02)00262-5. Zbl1007.05048
- [8] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, 1995).
- [9] K.-I. Kawarabayashi, A.S. Pedersen and B. Toft, Double-critical graphs and complete minors, Retrieved from http://adsabs.harvard.edu/abs/2008arXiv0810.3133K. Zbl1215.05069
- [10] A.V. Kostochka and M. Stiebitz, Colour-critical graphs with few edges, Discrete Math. 191 (1998) 125-137, doi: 10.1016/S0012-365X(98)00100-9. Zbl0955.05042
- [11] A.V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica 20 (2000) 521-530, doi: 10.1007/s004930070005. Zbl0996.05046
- [12] J.J. Lattanzio, Completely independent critical cliques, J. Combin. Math. Combin. Comput. 62 (2007) 165-170. Zbl1137.05033
- [13] J.J. Lattanzio, Edge double-critical graphs, Journal of Mathematics and Statistics 6 (3) (2010) 357-358, doi: 10.3844/jmssp.2010.357.358. Zbl1227.05146
- [14] M. Stiebitz, K₅ is the only double-critical 5 -chromatic graph, Discrete Math. 64 (1987) 91-93, doi: 10.1016/0012-365X(87)90242-1.
- [15] B. Toft, On the maximal number of edges of critical k -chromatic graphs, Studia Sci. Math. Hungar. 5 (1970) 461-470. Zbl0228.05111