On U-equivalence spaces

Farshad Omidi; MohammadReza Molaei

Topological Algebra and its Applications (2015)

  • Volume: 3, Issue: 1, page 26-33, electronic only
  • ISSN: 2299-3231

Abstract

top
In this paper induced U-equivalence spaces are introduced and discussed. Also the notion of U- equivalently open subsets of a U-equivalence space and U-equivalently open functions are studied. Finally, equivalently uniformisable topological spaces are considered.

How to cite

top

Farshad Omidi, and MohammadReza Molaei. "On U-equivalence spaces." Topological Algebra and its Applications 3.1 (2015): 26-33, electronic only. <http://eudml.org/doc/271083>.

@article{FarshadOmidi2015,
abstract = {In this paper induced U-equivalence spaces are introduced and discussed. Also the notion of U- equivalently open subsets of a U-equivalence space and U-equivalently open functions are studied. Finally, equivalently uniformisable topological spaces are considered.},
author = {Farshad Omidi, MohammadReza Molaei},
journal = {Topological Algebra and its Applications},
keywords = {U-equivalence spaces; Uniformisable; U-equivalently open set; -equivalence spaces; uniformisable; -equivalently open set},
language = {eng},
number = {1},
pages = {26-33, electronic only},
title = {On U-equivalence spaces},
url = {http://eudml.org/doc/271083},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Farshad Omidi
AU - MohammadReza Molaei
TI - On U-equivalence spaces
JO - Topological Algebra and its Applications
PY - 2015
VL - 3
IS - 1
SP - 26
EP - 33, electronic only
AB - In this paper induced U-equivalence spaces are introduced and discussed. Also the notion of U- equivalently open subsets of a U-equivalence space and U-equivalently open functions are studied. Finally, equivalently uniformisable topological spaces are considered.
LA - eng
KW - U-equivalence spaces; Uniformisable; U-equivalently open set; -equivalence spaces; uniformisable; -equivalently open set
UR - http://eudml.org/doc/271083
ER -

References

top
  1. [1] Banaschewski B.:¨Uber nulldimensionale r¨aume. Math. Nachr. 13, 129 -140 (1955). [Crossref] Zbl0064.41303
  2. [2] Bruno L.: Description combinatoire des ultram´etriques. Centre deMath´ematique Sociale. École Pratique des Hautes´Etudes. Math´ematiques et Sciences Humaines, 73, 5–37 (1981). 
  3. [3] Deses D.: On the representation of non-Archimedean objects. Topology and its Applications2005; 153, 5, 774-785 (2005). Zbl1102.54011
  4. [4] D. Dikranjan, E. Giuli, A. Tozzi: Topological categories and closure operators. Quaestiones Mathematicae, 11, 3, 323-337 (1988). [Crossref] Zbl0657.18003
  5. [5] Gutkin O.: Clustering of periodic orbits in chaotic systems, Nonlinearity, 26, 177–200 (2013). [WoS][Crossref] Zbl1263.05095
  6. [6] Hutton B.: Uniformities of fuzzy topological spaces. J. Math. Anal. Appl. 58, 559-571 (1977). [Crossref] Zbl0358.54008
  7. [7] James, I.M.: Topological and uniform spaces. Springer, New York (1987). Zbl0625.54001
  8. [8] Kunzi, H.P.A.: Uniform structures in the beginning of the third millenium. Topol. Appl., 154, 14, 2745-2756 (2007). [WoS] Zbl1126.54001
  9. [9] Lowen, R.: Fuzzy uniform spaces. Journal of Mathematical Analysis and Applications, 82 2, 370–385 (1981). Zbl0494.54005
  10. [10] Melikhov, S.A.: Metrizable uniform spaces. http://arxiv.org/pdf/1106.3249v4.pdf, 1-77 (2012). 
  11. [11] Monna A.F.: Remarques sur les m´etriques non-Archim´ediennes. I, II, Indag. Math. 53 122–133, 179–191 (1950). 
  12. [12] Omidi, F., Molaei, M.R.: U-Equivalence spaces. J. Appl. Environ. Biol. Sci., 4 2, 299-305 (2014). 
  13. [13] Preuß G.: E-zusammenh¨angende R¨aume, Manuscripta Mathematica, 3, 4, 331-342 (1970). [Crossref] 
  14. [14] Van Rooij A.C.M.: Non-Archimedean uniformities. Kyungpook Math. J. 10, 21–30 (1970). Zbl0194.54704
  15. [15] Van Rooij A.C.M.: Non-Archimedean functional analysis, Marcel Dekker, 1978. Zbl0396.46061

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.