On U-equivalence spaces

Farshad Omidi; MohammadReza Molaei

Topological Algebra and its Applications (2015)

  • Volume: 3, Issue: 1, page 26-33, electronic only
  • ISSN: 2299-3231

Abstract

top
In this paper induced U-equivalence spaces are introduced and discussed. Also the notion of U- equivalently open subsets of a U-equivalence space and U-equivalently open functions are studied. Finally, equivalently uniformisable topological spaces are considered.

How to cite

top

Farshad Omidi, and MohammadReza Molaei. "On U-equivalence spaces." Topological Algebra and its Applications 3.1 (2015): 26-33, electronic only. <http://eudml.org/doc/271083>.

@article{FarshadOmidi2015,
abstract = {In this paper induced U-equivalence spaces are introduced and discussed. Also the notion of U- equivalently open subsets of a U-equivalence space and U-equivalently open functions are studied. Finally, equivalently uniformisable topological spaces are considered.},
author = {Farshad Omidi, MohammadReza Molaei},
journal = {Topological Algebra and its Applications},
keywords = {U-equivalence spaces; Uniformisable; U-equivalently open set; -equivalence spaces; uniformisable; -equivalently open set},
language = {eng},
number = {1},
pages = {26-33, electronic only},
title = {On U-equivalence spaces},
url = {http://eudml.org/doc/271083},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Farshad Omidi
AU - MohammadReza Molaei
TI - On U-equivalence spaces
JO - Topological Algebra and its Applications
PY - 2015
VL - 3
IS - 1
SP - 26
EP - 33, electronic only
AB - In this paper induced U-equivalence spaces are introduced and discussed. Also the notion of U- equivalently open subsets of a U-equivalence space and U-equivalently open functions are studied. Finally, equivalently uniformisable topological spaces are considered.
LA - eng
KW - U-equivalence spaces; Uniformisable; U-equivalently open set; -equivalence spaces; uniformisable; -equivalently open set
UR - http://eudml.org/doc/271083
ER -

References

top
  1. [1] Banaschewski B.:¨Uber nulldimensionale r¨aume. Math. Nachr. 13, 129 -140 (1955). [Crossref] Zbl0064.41303
  2. [2] Bruno L.: Description combinatoire des ultram´etriques. Centre deMath´ematique Sociale. École Pratique des Hautes´Etudes. Math´ematiques et Sciences Humaines, 73, 5–37 (1981). 
  3. [3] Deses D.: On the representation of non-Archimedean objects. Topology and its Applications2005; 153, 5, 774-785 (2005). Zbl1102.54011
  4. [4] D. Dikranjan, E. Giuli, A. Tozzi: Topological categories and closure operators. Quaestiones Mathematicae, 11, 3, 323-337 (1988). [Crossref] Zbl0657.18003
  5. [5] Gutkin O.: Clustering of periodic orbits in chaotic systems, Nonlinearity, 26, 177–200 (2013). [WoS][Crossref] Zbl1263.05095
  6. [6] Hutton B.: Uniformities of fuzzy topological spaces. J. Math. Anal. Appl. 58, 559-571 (1977). [Crossref] Zbl0358.54008
  7. [7] James, I.M.: Topological and uniform spaces. Springer, New York (1987). Zbl0625.54001
  8. [8] Kunzi, H.P.A.: Uniform structures in the beginning of the third millenium. Topol. Appl., 154, 14, 2745-2756 (2007). [WoS] Zbl1126.54001
  9. [9] Lowen, R.: Fuzzy uniform spaces. Journal of Mathematical Analysis and Applications, 82 2, 370–385 (1981). Zbl0494.54005
  10. [10] Melikhov, S.A.: Metrizable uniform spaces. http://arxiv.org/pdf/1106.3249v4.pdf, 1-77 (2012). 
  11. [11] Monna A.F.: Remarques sur les m´etriques non-Archim´ediennes. I, II, Indag. Math. 53 122–133, 179–191 (1950). 
  12. [12] Omidi, F., Molaei, M.R.: U-Equivalence spaces. J. Appl. Environ. Biol. Sci., 4 2, 299-305 (2014). 
  13. [13] Preuß G.: E-zusammenh¨angende R¨aume, Manuscripta Mathematica, 3, 4, 331-342 (1970). [Crossref] 
  14. [14] Van Rooij A.C.M.: Non-Archimedean uniformities. Kyungpook Math. J. 10, 21–30 (1970). Zbl0194.54704
  15. [15] Van Rooij A.C.M.: Non-Archimedean functional analysis, Marcel Dekker, 1978. Zbl0396.46061

NotesEmbed ?

top

You must be logged in to post comments.