# Total Domination Multisubdivision Number of a Graph

Diana Avella-Alaminos; Magda Dettlaff; Magdalena Lemańska; Rita Zuazua

Discussiones Mathematicae Graph Theory (2015)

- Volume: 35, Issue: 2, page 315-327
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topDiana Avella-Alaminos, et al. "Total Domination Multisubdivision Number of a Graph." Discussiones Mathematicae Graph Theory 35.2 (2015): 315-327. <http://eudml.org/doc/271098>.

@article{DianaAvella2015,

abstract = {The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt (G) of a graph G and we show that for any connected graph G of order at least two, msdγt (G) ≤ 3. We show that for trees the total domination multisubdi- vision number is equal to the known total domination subdivision number. We also determine the total domination multisubdivision number for some classes of graphs and characterize trees T with msdγt (T) = 1.},

author = {Diana Avella-Alaminos, Magda Dettlaff, Magdalena Lemańska, Rita Zuazua},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {(total) domination; (total) domination subdivision number; (total) domination multisubdivision number; trees; total domination; total domination subdivision number; total domination multisubdivision number},

language = {eng},

number = {2},

pages = {315-327},

title = {Total Domination Multisubdivision Number of a Graph},

url = {http://eudml.org/doc/271098},

volume = {35},

year = {2015},

}

TY - JOUR

AU - Diana Avella-Alaminos

AU - Magda Dettlaff

AU - Magdalena Lemańska

AU - Rita Zuazua

TI - Total Domination Multisubdivision Number of a Graph

JO - Discussiones Mathematicae Graph Theory

PY - 2015

VL - 35

IS - 2

SP - 315

EP - 327

AB - The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt (G) of a graph G and we show that for any connected graph G of order at least two, msdγt (G) ≤ 3. We show that for trees the total domination multisubdi- vision number is equal to the known total domination subdivision number. We also determine the total domination multisubdivision number for some classes of graphs and characterize trees T with msdγt (T) = 1.

LA - eng

KW - (total) domination; (total) domination subdivision number; (total) domination multisubdivision number; trees; total domination; total domination subdivision number; total domination multisubdivision number

UR - http://eudml.org/doc/271098

ER -

## References

top- [1] H. Aram, S.M. Sheikholeslami and O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009) 622-628. doi:10.1016/j.disc.2007.12.085[Crossref] Zbl1171.05380
- [2] S. Benecke and C.M. Mynhardt, Trees with domination subdivision number one, Australas. J. Combin. 42 (2008) 201-209. Zbl1153.05018
- [3] M. Dettlaff, J. Raczek and J. Topp, Domination subdivision and multisubdivision numbers of graphs, submitted.
- [4] O. Favaron, H. Karami and S.M. Sheikholeslami, Disproof of a conjecture on the subdivision domination number of a graph, Graphs Combin. 24 (2008) 309-312. doi:10.1007/s00373-008-0788-6[Crossref] Zbl1193.05124
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998). Zbl0890.05002
- [6] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, Total domination subdivi- sion numbers, J. Combin. Math. Combin. Comput. 44 (2003) 115-128. Zbl1020.05048
- [7] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision num- bers of graphs, Discuss. Math. Graph Theory 24 (2004) 457-467. doi:10.7151/dmgt.1244[Crossref]
- [8] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision num- bers of trees, Discrete Math. 286 (2004) 195-202. doi:10.1016/j.disc.2004.06.004[Crossref]
- [9] H. Karami, A. Khodkar, R. Khoeilar and S.M. Sheikholeslami, Trees whose total domination subdivision number is one, Bull. Inst. Combin. Appl. 53 (2008) 56-57. Zbl1168.05050
- [10] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.