Smoothness of the attractor of almost all solutions of a delay differential equation

Walther Hans-Otto; Yebdri Mustapha

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1997

Abstract

top
AbstractLet a C¹-function f:ℝ → ℝ be given which satisfies f(0) = 0, f'(ξ) < 0 for all ξ ∈ ℝ, and sup f < ∞ or -∞ < inf f. Let C = C([-1,0],ℝ). For an open-dense set of initial data the phase curves [0,∞) → C given by the solutions [-1,∞) → ℝ to the negative feedback equationx'(t) = -μx(t) + f(x(t-1)), with μ > 0,are absorbed into the positively invariant set S ⊂ C of data ϕ ≠ 0 with at most one sign change. The global attractor A of the semiflow restricted to S̅ is either the singleton {0} or it is given by a Lipschitz continuous map a with domain pA in a 2-dimensional subspace L ⊂ C and range in a complementary subspace Q; pA is homeomorphic to the closed unit disk in ℝ². We show that a is in fact C¹-smooth.CONTENTS1. Introduction......................................................................................................................................................................52. The delay differential equation and its attractor of almost all solutions............................................................................9 2.1. The delay differential equation....................................................................................................................................9 2.2. Slowly oscillating solutions.........................................................................................................................................13 2.3. The attractor of eventually slowly oscillating solutions...............................................................................................16 2.4. Floquet multipliers of slowly oscillating periodic solutions and adapted Poincaré maps.............................................21 2.5. Local invariant manifolds...........................................................................................................................................273. A-priori estimates...........................................................................................................................................................33 3.1. Nonautonomous equations........................................................................................................................................33 3.2. Vectors tangent to the attractor and to domains of adapted Poincaré maps.............................................................394. Transversals on the attractor and smoothness..............................................................................................................41 4.1. A sufficient condition for smoothness.........................................................................................................................41 4.2. Smoothness at wandering points...............................................................................................................................425. Curves on the attractor emanating from periodic orbits and connecting the stationary point to a periodic orbit............44 5.1. From lines in the plane L to curves on the graph A which are transversal to the flow................................................44 5.2. Arcs emanating from periodic orbits..........................................................................................................................45 5.3. Smooth ends at periodic orbits..................................................................................................................................47 5.4. A curve on A connecting 0 in K̅ to a periodic orbit.....................................................................................................536. Smoothness at periodic orbits.......................................................................................................................................59 6.1. Interior periodic orbits................................................................................................................................................59 6.2. Smoothness at the boundary.....................................................................................................................................627. Smoothness at the stationary point................................................................................................................................63 7.1. Cases of no attraction................................................................................................................................................63 7.2. On the inclination of tangent spaces of the attractor close to the stationary point.....................................................65 7.3. The cases of attraction..............................................................................................................................................68References........................................................................................................................................................................711991 Mathematics Subject Classification: 34K15, 58F12.

How to cite

top

Walther Hans-Otto, and Yebdri Mustapha. Smoothness of the attractor of almost all solutions of a delay differential equation. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1997. <http://eudml.org/doc/271130>.

@book{WaltherHans1997,
abstract = {AbstractLet a C¹-function f:ℝ → ℝ be given which satisfies f(0) = 0, f'(ξ) < 0 for all ξ ∈ ℝ, and sup f < ∞ or -∞ < inf f. Let C = C([-1,0],ℝ). For an open-dense set of initial data the phase curves [0,∞) → C given by the solutions [-1,∞) → ℝ to the negative feedback equationx'(t) = -μx(t) + f(x(t-1)), with μ > 0,are absorbed into the positively invariant set S ⊂ C of data ϕ ≠ 0 with at most one sign change. The global attractor A of the semiflow restricted to S̅ is either the singleton \{0\} or it is given by a Lipschitz continuous map a with domain pA in a 2-dimensional subspace L ⊂ C and range in a complementary subspace Q; pA is homeomorphic to the closed unit disk in ℝ². We show that a is in fact C¹-smooth.CONTENTS1. Introduction......................................................................................................................................................................52. The delay differential equation and its attractor of almost all solutions............................................................................9 2.1. The delay differential equation....................................................................................................................................9 2.2. Slowly oscillating solutions.........................................................................................................................................13 2.3. The attractor of eventually slowly oscillating solutions...............................................................................................16 2.4. Floquet multipliers of slowly oscillating periodic solutions and adapted Poincaré maps.............................................21 2.5. Local invariant manifolds...........................................................................................................................................273. A-priori estimates...........................................................................................................................................................33 3.1. Nonautonomous equations........................................................................................................................................33 3.2. Vectors tangent to the attractor and to domains of adapted Poincaré maps.............................................................394. Transversals on the attractor and smoothness..............................................................................................................41 4.1. A sufficient condition for smoothness.........................................................................................................................41 4.2. Smoothness at wandering points...............................................................................................................................425. Curves on the attractor emanating from periodic orbits and connecting the stationary point to a periodic orbit............44 5.1. From lines in the plane L to curves on the graph A which are transversal to the flow................................................44 5.2. Arcs emanating from periodic orbits..........................................................................................................................45 5.3. Smooth ends at periodic orbits..................................................................................................................................47 5.4. A curve on A connecting 0 in K̅ to a periodic orbit.....................................................................................................536. Smoothness at periodic orbits.......................................................................................................................................59 6.1. Interior periodic orbits................................................................................................................................................59 6.2. Smoothness at the boundary.....................................................................................................................................627. Smoothness at the stationary point................................................................................................................................63 7.1. Cases of no attraction................................................................................................................................................63 7.2. On the inclination of tangent spaces of the attractor close to the stationary point.....................................................65 7.3. The cases of attraction..............................................................................................................................................68References........................................................................................................................................................................711991 Mathematics Subject Classification: 34K15, 58F12.},
author = {Walther Hans-Otto, Yebdri Mustapha},
keywords = {delay differential equation; negative feedback equation; global attractor; semiflow},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Smoothness of the attractor of almost all solutions of a delay differential equation},
url = {http://eudml.org/doc/271130},
year = {1997},
}

TY - BOOK
AU - Walther Hans-Otto
AU - Yebdri Mustapha
TI - Smoothness of the attractor of almost all solutions of a delay differential equation
PY - 1997
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractLet a C¹-function f:ℝ → ℝ be given which satisfies f(0) = 0, f'(ξ) < 0 for all ξ ∈ ℝ, and sup f < ∞ or -∞ < inf f. Let C = C([-1,0],ℝ). For an open-dense set of initial data the phase curves [0,∞) → C given by the solutions [-1,∞) → ℝ to the negative feedback equationx'(t) = -μx(t) + f(x(t-1)), with μ > 0,are absorbed into the positively invariant set S ⊂ C of data ϕ ≠ 0 with at most one sign change. The global attractor A of the semiflow restricted to S̅ is either the singleton {0} or it is given by a Lipschitz continuous map a with domain pA in a 2-dimensional subspace L ⊂ C and range in a complementary subspace Q; pA is homeomorphic to the closed unit disk in ℝ². We show that a is in fact C¹-smooth.CONTENTS1. Introduction......................................................................................................................................................................52. The delay differential equation and its attractor of almost all solutions............................................................................9 2.1. The delay differential equation....................................................................................................................................9 2.2. Slowly oscillating solutions.........................................................................................................................................13 2.3. The attractor of eventually slowly oscillating solutions...............................................................................................16 2.4. Floquet multipliers of slowly oscillating periodic solutions and adapted Poincaré maps.............................................21 2.5. Local invariant manifolds...........................................................................................................................................273. A-priori estimates...........................................................................................................................................................33 3.1. Nonautonomous equations........................................................................................................................................33 3.2. Vectors tangent to the attractor and to domains of adapted Poincaré maps.............................................................394. Transversals on the attractor and smoothness..............................................................................................................41 4.1. A sufficient condition for smoothness.........................................................................................................................41 4.2. Smoothness at wandering points...............................................................................................................................425. Curves on the attractor emanating from periodic orbits and connecting the stationary point to a periodic orbit............44 5.1. From lines in the plane L to curves on the graph A which are transversal to the flow................................................44 5.2. Arcs emanating from periodic orbits..........................................................................................................................45 5.3. Smooth ends at periodic orbits..................................................................................................................................47 5.4. A curve on A connecting 0 in K̅ to a periodic orbit.....................................................................................................536. Smoothness at periodic orbits.......................................................................................................................................59 6.1. Interior periodic orbits................................................................................................................................................59 6.2. Smoothness at the boundary.....................................................................................................................................627. Smoothness at the stationary point................................................................................................................................63 7.1. Cases of no attraction................................................................................................................................................63 7.2. On the inclination of tangent spaces of the attractor close to the stationary point.....................................................65 7.3. The cases of attraction..............................................................................................................................................68References........................................................................................................................................................................711991 Mathematics Subject Classification: 34K15, 58F12.
LA - eng
KW - delay differential equation; negative feedback equation; global attractor; semiflow
UR - http://eudml.org/doc/271130
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.