Nearstandardness on a finite set
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1997
Access Full Book
topAbstract
topHow to cite
topLyantse V.. Nearstandardness on a finite set. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1997. <http://eudml.org/doc/271131>.
@book{LyantseV1997,
abstract = {AbstractLet T be a finite set for which card T is a natural nonstandard number. The linear space $ℂ^T$ of complex-valued functions on T is nonstandard. For the analysis on $ℂ^T$ we need a concept of nearstandardness in this space. A version how to introduce such a concept is proposed. Some elementary examples are given.CONTENTSIntroduction.................................................................................................................50. Preliminary notes....................................................................................................7 0.1. Definitions...........................................................................................................7 0.2. ⟨nst⟩-condition....................................................................................................8 0.3. ⟨nst⟩-condition for linear operators.....................................................................9 0.4. Nearstandardness on ℬ(X;Y)............................................................................10 0.5. Strong and uniform nearstandardness.............................................................111. Standard filling.....................................................................................................13 1.1. Definition of a standard filling...........................................................................14 1.2. Charge spaces.................................................................................................15 1.3. Discrete interval...............................................................................................16 1.4. Exact inductors.................................................................................................18 1.5. Standard measure filling...................................................................................18 1.6. The embedding N → M.....................................................................................192. Standardness on $ℂ^$.......................................................................................20 2.1. The embedding $ℂ^ → L(T)$.........................................................................20 2.2. The inductor $Π:L(T) → ℂ^$...........................................................................21 2.3. Standard and nearstandard functions on $ℂ^$; standardized image.............23 2.4. Absolute continuity, integrability........................................................................23 2.5. Some “classical theorems”................................................................................25 2.6. Relation between the “discrete integral” and the ordinary one.........................263. The spaces ℍ and H............................................................................................26 3.1. Embedding and inductor...................................................................................27 3.2. Quasi-unity and the orthoprojector P................................................................28 3.3. Weak nearstandardness on ℍ.........................................................................304. Nearstandardness on ℬ(ℍ)..................................................................................31 4.1. The embedding Q and the inductor P...............................................................31 4.2. Exactness of P..................................................................................................31 4.3. Strong and uniform nearstandardness.............................................................32 4.4. Graph-nearstandardness.................................................................................34 4.5. ℬ₂-nearstandardness.......................................................................................355. Discrete Fourier transform...................................................................................39 5.1. The shift $U_θ$................................................................................................39 5.2. The operator $D_θ$.........................................................................................42 5.3. Discrete Riemann-Lebesgue lemma.................................................................44 5.4. A nearstandardness criterion...........................................................................46 5.5. Nearstandardness of the shift..........................................................................47 5.6. Nearstandardness of discrete differentiation....................................................49 5.7. Case a +∞.....................................................................................................526. Application of equipment......................................................................................55 6.1. Induced equipment...........................................................................................56 6.2. H₋-nearstandardness.......................................................................................57 6.3. Example of equipment......................................................................................58 6.4. H₋-nearstandard operators..............................................................................59 6.5. H₋-nearstandardness of discrete differentiation...............................................61References...............................................................................................................631991 Mathematics Subject Classification: 03H05, 28E05, 47S20.},
author = {Lyantse V.},
keywords = {a standard filling (with measure); a quasi-kernel of inductor; projector-quasi-unity; induced equipment; internal set theory; operator theory; nearstandardness; Hilbert spaces; hyperfinite-dimensional vector spaces},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Nearstandardness on a finite set},
url = {http://eudml.org/doc/271131},
year = {1997},
}
TY - BOOK
AU - Lyantse V.
TI - Nearstandardness on a finite set
PY - 1997
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractLet T be a finite set for which card T is a natural nonstandard number. The linear space $ℂ^T$ of complex-valued functions on T is nonstandard. For the analysis on $ℂ^T$ we need a concept of nearstandardness in this space. A version how to introduce such a concept is proposed. Some elementary examples are given.CONTENTSIntroduction.................................................................................................................50. Preliminary notes....................................................................................................7 0.1. Definitions...........................................................................................................7 0.2. ⟨nst⟩-condition....................................................................................................8 0.3. ⟨nst⟩-condition for linear operators.....................................................................9 0.4. Nearstandardness on ℬ(X;Y)............................................................................10 0.5. Strong and uniform nearstandardness.............................................................111. Standard filling.....................................................................................................13 1.1. Definition of a standard filling...........................................................................14 1.2. Charge spaces.................................................................................................15 1.3. Discrete interval...............................................................................................16 1.4. Exact inductors.................................................................................................18 1.5. Standard measure filling...................................................................................18 1.6. The embedding N → M.....................................................................................192. Standardness on $ℂ^$.......................................................................................20 2.1. The embedding $ℂ^ → L(T)$.........................................................................20 2.2. The inductor $Π:L(T) → ℂ^$...........................................................................21 2.3. Standard and nearstandard functions on $ℂ^$; standardized image.............23 2.4. Absolute continuity, integrability........................................................................23 2.5. Some “classical theorems”................................................................................25 2.6. Relation between the “discrete integral” and the ordinary one.........................263. The spaces ℍ and H............................................................................................26 3.1. Embedding and inductor...................................................................................27 3.2. Quasi-unity and the orthoprojector P................................................................28 3.3. Weak nearstandardness on ℍ.........................................................................304. Nearstandardness on ℬ(ℍ)..................................................................................31 4.1. The embedding Q and the inductor P...............................................................31 4.2. Exactness of P..................................................................................................31 4.3. Strong and uniform nearstandardness.............................................................32 4.4. Graph-nearstandardness.................................................................................34 4.5. ℬ₂-nearstandardness.......................................................................................355. Discrete Fourier transform...................................................................................39 5.1. The shift $U_θ$................................................................................................39 5.2. The operator $D_θ$.........................................................................................42 5.3. Discrete Riemann-Lebesgue lemma.................................................................44 5.4. A nearstandardness criterion...........................................................................46 5.5. Nearstandardness of the shift..........................................................................47 5.6. Nearstandardness of discrete differentiation....................................................49 5.7. Case a +∞.....................................................................................................526. Application of equipment......................................................................................55 6.1. Induced equipment...........................................................................................56 6.2. H₋-nearstandardness.......................................................................................57 6.3. Example of equipment......................................................................................58 6.4. H₋-nearstandard operators..............................................................................59 6.5. H₋-nearstandardness of discrete differentiation...............................................61References...............................................................................................................631991 Mathematics Subject Classification: 03H05, 28E05, 47S20.
LA - eng
KW - a standard filling (with measure); a quasi-kernel of inductor; projector-quasi-unity; induced equipment; internal set theory; operator theory; nearstandardness; Hilbert spaces; hyperfinite-dimensional vector spaces
UR - http://eudml.org/doc/271131
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.