Nearstandardness on a finite set

Lyantse V.

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1997

Abstract

top
AbstractLet T be a finite set for which card T is a natural nonstandard number. The linear space T of complex-valued functions on T is nonstandard. For the analysis on T we need a concept of nearstandardness in this space. A version how to introduce such a concept is proposed. Some elementary examples are given.CONTENTSIntroduction.................................................................................................................50. Preliminary notes....................................................................................................7 0.1. Definitions...........................................................................................................7 0.2. ⟨nst⟩-condition....................................................................................................8 0.3. ⟨nst⟩-condition for linear operators.....................................................................9 0.4. Nearstandardness on ℬ(X;Y)............................................................................10 0.5. Strong and uniform nearstandardness.............................................................111. Standard filling.....................................................................................................13 1.1. Definition of a standard filling...........................................................................14 1.2. Charge spaces.................................................................................................15 1.3. Discrete interval...............................................................................................16 1.4. Exact inductors.................................................................................................18 1.5. Standard measure filling...................................................................................18 1.6. The embedding N → M.....................................................................................192. Standardness on .......................................................................................20 2.1. The embedding L ( T ) .........................................................................20 2.2. The inductor Π : L ( T ) ...........................................................................21 2.3. Standard and nearstandard functions on ; standardized image.............23 2.4. Absolute continuity, integrability........................................................................23 2.5. Some “classical theorems”................................................................................25 2.6. Relation between the “discrete integral” and the ordinary one.........................263. The spaces ℍ and H............................................................................................26 3.1. Embedding and inductor...................................................................................27 3.2. Quasi-unity and the orthoprojector P................................................................28 3.3. Weak nearstandardness on ℍ.........................................................................304. Nearstandardness on ℬ(ℍ)..................................................................................31 4.1. The embedding Q and the inductor P...............................................................31 4.2. Exactness of P..................................................................................................31 4.3. Strong and uniform nearstandardness.............................................................32 4.4. Graph-nearstandardness.................................................................................34 4.5. ℬ₂-nearstandardness.......................................................................................355. Discrete Fourier transform...................................................................................39 5.1. The shift U θ ................................................................................................39 5.2. The operator D θ .........................................................................................42 5.3. Discrete Riemann-Lebesgue lemma.................................................................44 5.4. A nearstandardness criterion...........................................................................46 5.5. Nearstandardness of the shift..........................................................................47 5.6. Nearstandardness of discrete differentiation....................................................49 5.7. Case a   +∞.....................................................................................................526. Application of equipment......................................................................................55 6.1. Induced equipment...........................................................................................56 6.2. H₋-nearstandardness.......................................................................................57 6.3. Example of equipment......................................................................................58 6.4. H₋-nearstandard operators..............................................................................59 6.5. H₋-nearstandardness of discrete differentiation...............................................61References...............................................................................................................631991 Mathematics Subject Classification: 03H05, 28E05, 47S20.

How to cite

top

Lyantse V.. Nearstandardness on a finite set. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1997. <http://eudml.org/doc/271131>.

@book{LyantseV1997,
abstract = {AbstractLet T be a finite set for which card T is a natural nonstandard number. The linear space $ℂ^T$ of complex-valued functions on T is nonstandard. For the analysis on $ℂ^T$ we need a concept of nearstandardness in this space. A version how to introduce such a concept is proposed. Some elementary examples are given.CONTENTSIntroduction.................................................................................................................50. Preliminary notes....................................................................................................7 0.1. Definitions...........................................................................................................7 0.2. ⟨nst⟩-condition....................................................................................................8 0.3. ⟨nst⟩-condition for linear operators.....................................................................9 0.4. Nearstandardness on ℬ(X;Y)............................................................................10 0.5. Strong and uniform nearstandardness.............................................................111. Standard filling.....................................................................................................13 1.1. Definition of a standard filling...........................................................................14 1.2. Charge spaces.................................................................................................15 1.3. Discrete interval...............................................................................................16 1.4. Exact inductors.................................................................................................18 1.5. Standard measure filling...................................................................................18 1.6. The embedding N → M.....................................................................................192. Standardness on $ℂ^$.......................................................................................20 2.1. The embedding $ℂ^ → L(T)$.........................................................................20 2.2. The inductor $Π:L(T) → ℂ^$...........................................................................21 2.3. Standard and nearstandard functions on $ℂ^$; standardized image.............23 2.4. Absolute continuity, integrability........................................................................23 2.5. Some “classical theorems”................................................................................25 2.6. Relation between the “discrete integral” and the ordinary one.........................263. The spaces ℍ and H............................................................................................26 3.1. Embedding and inductor...................................................................................27 3.2. Quasi-unity and the orthoprojector P................................................................28 3.3. Weak nearstandardness on ℍ.........................................................................304. Nearstandardness on ℬ(ℍ)..................................................................................31 4.1. The embedding Q and the inductor P...............................................................31 4.2. Exactness of P..................................................................................................31 4.3. Strong and uniform nearstandardness.............................................................32 4.4. Graph-nearstandardness.................................................................................34 4.5. ℬ₂-nearstandardness.......................................................................................355. Discrete Fourier transform...................................................................................39 5.1. The shift $U_θ$................................................................................................39 5.2. The operator $D_θ$.........................................................................................42 5.3. Discrete Riemann-Lebesgue lemma.................................................................44 5.4. A nearstandardness criterion...........................................................................46 5.5. Nearstandardness of the shift..........................................................................47 5.6. Nearstandardness of discrete differentiation....................................................49 5.7. Case a   +∞.....................................................................................................526. Application of equipment......................................................................................55 6.1. Induced equipment...........................................................................................56 6.2. H₋-nearstandardness.......................................................................................57 6.3. Example of equipment......................................................................................58 6.4. H₋-nearstandard operators..............................................................................59 6.5. H₋-nearstandardness of discrete differentiation...............................................61References...............................................................................................................631991 Mathematics Subject Classification: 03H05, 28E05, 47S20.},
author = {Lyantse V.},
keywords = {a standard filling (with measure); a quasi-kernel of inductor; projector-quasi-unity; induced equipment; internal set theory; operator theory; nearstandardness; Hilbert spaces; hyperfinite-dimensional vector spaces},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Nearstandardness on a finite set},
url = {http://eudml.org/doc/271131},
year = {1997},
}

TY - BOOK
AU - Lyantse V.
TI - Nearstandardness on a finite set
PY - 1997
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractLet T be a finite set for which card T is a natural nonstandard number. The linear space $ℂ^T$ of complex-valued functions on T is nonstandard. For the analysis on $ℂ^T$ we need a concept of nearstandardness in this space. A version how to introduce such a concept is proposed. Some elementary examples are given.CONTENTSIntroduction.................................................................................................................50. Preliminary notes....................................................................................................7 0.1. Definitions...........................................................................................................7 0.2. ⟨nst⟩-condition....................................................................................................8 0.3. ⟨nst⟩-condition for linear operators.....................................................................9 0.4. Nearstandardness on ℬ(X;Y)............................................................................10 0.5. Strong and uniform nearstandardness.............................................................111. Standard filling.....................................................................................................13 1.1. Definition of a standard filling...........................................................................14 1.2. Charge spaces.................................................................................................15 1.3. Discrete interval...............................................................................................16 1.4. Exact inductors.................................................................................................18 1.5. Standard measure filling...................................................................................18 1.6. The embedding N → M.....................................................................................192. Standardness on $ℂ^$.......................................................................................20 2.1. The embedding $ℂ^ → L(T)$.........................................................................20 2.2. The inductor $Π:L(T) → ℂ^$...........................................................................21 2.3. Standard and nearstandard functions on $ℂ^$; standardized image.............23 2.4. Absolute continuity, integrability........................................................................23 2.5. Some “classical theorems”................................................................................25 2.6. Relation between the “discrete integral” and the ordinary one.........................263. The spaces ℍ and H............................................................................................26 3.1. Embedding and inductor...................................................................................27 3.2. Quasi-unity and the orthoprojector P................................................................28 3.3. Weak nearstandardness on ℍ.........................................................................304. Nearstandardness on ℬ(ℍ)..................................................................................31 4.1. The embedding Q and the inductor P...............................................................31 4.2. Exactness of P..................................................................................................31 4.3. Strong and uniform nearstandardness.............................................................32 4.4. Graph-nearstandardness.................................................................................34 4.5. ℬ₂-nearstandardness.......................................................................................355. Discrete Fourier transform...................................................................................39 5.1. The shift $U_θ$................................................................................................39 5.2. The operator $D_θ$.........................................................................................42 5.3. Discrete Riemann-Lebesgue lemma.................................................................44 5.4. A nearstandardness criterion...........................................................................46 5.5. Nearstandardness of the shift..........................................................................47 5.6. Nearstandardness of discrete differentiation....................................................49 5.7. Case a   +∞.....................................................................................................526. Application of equipment......................................................................................55 6.1. Induced equipment...........................................................................................56 6.2. H₋-nearstandardness.......................................................................................57 6.3. Example of equipment......................................................................................58 6.4. H₋-nearstandard operators..............................................................................59 6.5. H₋-nearstandardness of discrete differentiation...............................................61References...............................................................................................................631991 Mathematics Subject Classification: 03H05, 28E05, 47S20.
LA - eng
KW - a standard filling (with measure); a quasi-kernel of inductor; projector-quasi-unity; induced equipment; internal set theory; operator theory; nearstandardness; Hilbert spaces; hyperfinite-dimensional vector spaces
UR - http://eudml.org/doc/271131
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.