Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets
Alexander Kaplan; Rainer Tichatschke
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2010)
- Volume: 30, Issue: 1, page 51-59
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Auslender and M. Haddou, An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities, Math. Programming 71 (1995), 77-100. doi:10.1007/BF01592246 Zbl0855.90095
- [2] A. Auslender and M. Teboulle, Entropic proximal decomposition methods for convex programs and variational inequalities, Math. Programming (A) 91 (2001), 33-47. Zbl1051.90017
- [3] A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Computational Optimization and Applications 12 (1999), 31-40. doi:10.1023/A:1008607511915 Zbl1039.90529
- [4] Y. Censor, A. Iusem and S.A. Zenios, An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming 81 (1998), 373-400. doi:10.1007/BF01580089
- [5] A. Kaplan and R. Tichatschke, Interior proximal method for variational inequalities: Case of non-paramonotone operators, Journal of Set-valued Analysis 12 (2004), 357-382. doi:10.1007/s11228-004-4379-2 Zbl1072.65093
- [6] A. Kaplan and R. Tichatschke, Interior proximal method for variational inequalities on non-polyhedral sets, Discuss. Math. DICO 27 (2007), 71-93. Zbl1158.47052