Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2009)
- Volume: 29, Issue: 1, page 53-66
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topPaulina Pych-Taberska. "Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 29.1 (2009): 53-66. <http://eudml.org/doc/271163>.
@article{PaulinaPych2009,
abstract = {In this paper we establish an estimation for the rate of pointwise convergence of the Chlodovsky-Kantorovich polynomials for functions f locally integrable on the interval [0,∞). In particular, corresponding estimation for functions f measurable and locally bounded on [0,∞) is presented, too.},
author = {Paulina Pych-Taberska},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Chlodovsky polynomial; Kantorovich polynomial; rate of convergence},
language = {eng},
number = {1},
pages = {53-66},
title = {Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions},
url = {http://eudml.org/doc/271163},
volume = {29},
year = {2009},
}
TY - JOUR
AU - Paulina Pych-Taberska
TI - Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2009
VL - 29
IS - 1
SP - 53
EP - 66
AB - In this paper we establish an estimation for the rate of pointwise convergence of the Chlodovsky-Kantorovich polynomials for functions f locally integrable on the interval [0,∞). In particular, corresponding estimation for functions f measurable and locally bounded on [0,∞) is presented, too.
LA - eng
KW - Chlodovsky polynomial; Kantorovich polynomial; rate of convergence
UR - http://eudml.org/doc/271163
ER -
References
top- [1] J. Albrycht and J. Radecki, On a generalization of the theorem of Voronovskaya, Zeszyty Naukowe UAM, Zeszyt 2, Poznań (1960), 1-7. Zbl0094.03704
- [2] R. Bojanic and O. Shisha, Degree of L₁ approximation to integrable functions by modified Bernstein polynomials, J. Approx. Theory 13 (1975), 66-72. Zbl0305.41009
- [3] P.L. Butzer and H. Karsli, Voronovskaya-type theorems for derivatives of the Bernstein-Chlodovsky polynomials and the Szász-Mirakyan operator, Comment. Math., to appear. Zbl1236.41022
- [4] Z.A. Chanturiya, Modulus of variation of functions and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR 214 (1974), 63-66.
- [5] I. Chlodovsky, Sur le développement des fonctions définies dans un intervalle infini en séries de polynomes de M.S. Bernstein, Compositio Math. 4 (1937), 380-393. Zbl63.0237.01
- [6] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl. 5 (1) (1989), 105-127. Zbl0669.41014
- [7] H. Karsli and E. Ibikli, Rate of convergence of Chlodovsky type Bernstein operators for functions of bounded variation, Numer. Funct. Anal. Optim. 28 (3-4) (2007), 367-378. Zbl1117.41020
- [8] G.G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
- [9] P. Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, J. Approx. Theory 123 (2003), 256-269.
- [10] L.C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Annalen 115 (1938), 581-612. Zbl64.0198.03
- [11] X.M. Zeng, Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions, J. Math. Anal. Appl. 219 (2) (1998), 364-376. Zbl0909.41015
- [12] X.M. Zeng and A. Piriou On the rate of convergence of two Berstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998), 369-387.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.