# Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2009)

- Volume: 29, Issue: 1, page 53-66
- ISSN: 1509-9407

## Access Full Article

top## Abstract

top## How to cite

topPaulina Pych-Taberska. "Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 29.1 (2009): 53-66. <http://eudml.org/doc/271163>.

@article{PaulinaPych2009,

abstract = {In this paper we establish an estimation for the rate of pointwise convergence of the Chlodovsky-Kantorovich polynomials for functions f locally integrable on the interval [0,∞). In particular, corresponding estimation for functions f measurable and locally bounded on [0,∞) is presented, too.},

author = {Paulina Pych-Taberska},

journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},

keywords = {Chlodovsky polynomial; Kantorovich polynomial; rate of convergence},

language = {eng},

number = {1},

pages = {53-66},

title = {Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions},

url = {http://eudml.org/doc/271163},

volume = {29},

year = {2009},

}

TY - JOUR

AU - Paulina Pych-Taberska

TI - Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions

JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization

PY - 2009

VL - 29

IS - 1

SP - 53

EP - 66

AB - In this paper we establish an estimation for the rate of pointwise convergence of the Chlodovsky-Kantorovich polynomials for functions f locally integrable on the interval [0,∞). In particular, corresponding estimation for functions f measurable and locally bounded on [0,∞) is presented, too.

LA - eng

KW - Chlodovsky polynomial; Kantorovich polynomial; rate of convergence

UR - http://eudml.org/doc/271163

ER -

## References

top- [1] J. Albrycht and J. Radecki, On a generalization of the theorem of Voronovskaya, Zeszyty Naukowe UAM, Zeszyt 2, Poznań (1960), 1-7. Zbl0094.03704
- [2] R. Bojanic and O. Shisha, Degree of L₁ approximation to integrable functions by modified Bernstein polynomials, J. Approx. Theory 13 (1975), 66-72. Zbl0305.41009
- [3] P.L. Butzer and H. Karsli, Voronovskaya-type theorems for derivatives of the Bernstein-Chlodovsky polynomials and the Szász-Mirakyan operator, Comment. Math., to appear. Zbl1236.41022
- [4] Z.A. Chanturiya, Modulus of variation of functions and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR 214 (1974), 63-66.
- [5] I. Chlodovsky, Sur le développement des fonctions définies dans un intervalle infini en séries de polynomes de M.S. Bernstein, Compositio Math. 4 (1937), 380-393. Zbl63.0237.01
- [6] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl. 5 (1) (1989), 105-127. Zbl0669.41014
- [7] H. Karsli and E. Ibikli, Rate of convergence of Chlodovsky type Bernstein operators for functions of bounded variation, Numer. Funct. Anal. Optim. 28 (3-4) (2007), 367-378. Zbl1117.41020
- [8] G.G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
- [9] P. Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, J. Approx. Theory 123 (2003), 256-269.
- [10] L.C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Annalen 115 (1938), 581-612. Zbl64.0198.03
- [11] X.M. Zeng, Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions, J. Math. Anal. Appl. 219 (2) (1998), 364-376. Zbl0909.41015
- [12] X.M. Zeng and A. Piriou On the rate of convergence of two Berstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998), 369-387.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.