Necessary conditions for linear noncooperative N-player delta differential games on time scales

Natália Martins; Delfim F.M. Torres

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2011)

  • Volume: 31, Issue: 1, page 23-37
  • ISSN: 1509-9407

Abstract

top
We present necessary conditions for linear noncooperative N-player delta dynamic games on an arbitrary time scale. Necessary conditions for an open-loop Nash-equilibrium and for a memoryless perfect state Nash-equilibrium are proved.

How to cite

top

Natália Martins, and Delfim F.M. Torres. "Necessary conditions for linear noncooperative N-player delta differential games on time scales." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 31.1 (2011): 23-37. <http://eudml.org/doc/271165>.

@article{NatáliaMartins2011,
abstract = {We present necessary conditions for linear noncooperative N-player delta dynamic games on an arbitrary time scale. Necessary conditions for an open-loop Nash-equilibrium and for a memoryless perfect state Nash-equilibrium are proved.},
author = {Natália Martins, Delfim F.M. Torres},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {delta differential games; dynamic games on time scales; Nash-equilibrium},
language = {eng},
number = {1},
pages = {23-37},
title = {Necessary conditions for linear noncooperative N-player delta differential games on time scales},
url = {http://eudml.org/doc/271165},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Natália Martins
AU - Delfim F.M. Torres
TI - Necessary conditions for linear noncooperative N-player delta differential games on time scales
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2011
VL - 31
IS - 1
SP - 23
EP - 37
AB - We present necessary conditions for linear noncooperative N-player delta dynamic games on an arbitrary time scale. Necessary conditions for an open-loop Nash-equilibrium and for a memoryless perfect state Nash-equilibrium are proved.
LA - eng
KW - delta differential games; dynamic games on time scales; Nash-equilibrium
UR - http://eudml.org/doc/271165
ER -

References

top
  1. [1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati equations. In control and systems theory, Systems & Control: Foundations & Applications, Birkhäuser Verlag, Basel, 2003. Zbl1027.93001
  2. [2] Z. Bartosiewicz and E. Pawluszewicz, Realizations of linear control systems on times scales, Control and Cybernetics 35 (4) (2006), 769-786. Zbl1133.93033
  3. [3] M. Bohner and A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001. Zbl0978.39001
  4. [4] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8230-9 Zbl1025.34001
  5. [5] R.A.C. Ferreira and D.F.M. Torres, Remarks on the calculus of variations on time scales, Int. J. Ecol. Econ. Stat. 9 F07 (2007), 65-73. 
  6. [6] R.A.C. Ferreira and D.F.M. Torres, Higher-order calculus of variations on time scales, Mathematical control theory and finance, (Springer, Berlin, 2008), 149-159. Zbl1191.49017
  7. [7] R.A.C. Ferreira and D.F.M. Torres, Necessary optimality conditions for the calculus of variations on time scales, arXiv:0704.0656. 
  8. [8] S. Hilger, Ein Ma{ßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universitäat Würzburg, 1988. Zbl0695.34001
  9. [9] S. Hilger, Differential and difference calculus- unified! Proceedings of the Second World Congress on Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Analysis 30 (5) (1997), 2683-2694. doi: 10.1016/S0362-546X(96)00204-0 
  10. [10] G. Jank, Introduction to non-cooperative dynamical game theory, University of Aveiro, 2007 (personal notes). 
  11. [11] G. Leitmann, Cooperative and non-cooperative many players differential games, Course held at the Department of Automation and Information, July 1973. International Centre for Mechanical Sciences, Courses and Lectures No. 190, Wien - New York: Springer-Verlag, 1974. Zbl0358.90085
  12. [12] L.S. Pontryagin, V.G. Boltyanskij, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes, Translated from Russian by K.N. Trirogoff; edited by L.W. Neustadt, Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962. Zbl0102.32001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.