Existence of solutions for second order stochastic differential inclusions in Hilbert spaces

P. Balasubramaniam; S.K. Ntouyas

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2007)

  • Volume: 27, Issue: 2, page 365-384
  • ISSN: 1509-9407

Abstract

top
In this paper, sufficient conditions are given for the existence of solutions for a class of second order stochastic differential inclusions in Hilbert space with the help of Leray-Schauder Nonlinear Alternative.

How to cite

top

P. Balasubramaniam, and S.K. Ntouyas. "Existence of solutions for second order stochastic differential inclusions in Hilbert spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 27.2 (2007): 365-384. <http://eudml.org/doc/271169>.

@article{P2007,
abstract = {In this paper, sufficient conditions are given for the existence of solutions for a class of second order stochastic differential inclusions in Hilbert space with the help of Leray-Schauder Nonlinear Alternative.},
author = {P. Balasubramaniam, S.K. Ntouyas},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {existence; multivalued map; stochastic differential inclusions; fixed point; Hilbert space; Existence; Multivalued map; Stochastic Differential Inclusions; Fixed Point; Hilbert Space},
language = {eng},
number = {2},
pages = {365-384},
title = {Existence of solutions for second order stochastic differential inclusions in Hilbert spaces},
url = {http://eudml.org/doc/271169},
volume = {27},
year = {2007},
}

TY - JOUR
AU - P. Balasubramaniam
AU - S.K. Ntouyas
TI - Existence of solutions for second order stochastic differential inclusions in Hilbert spaces
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2007
VL - 27
IS - 2
SP - 365
EP - 384
AB - In this paper, sufficient conditions are given for the existence of solutions for a class of second order stochastic differential inclusions in Hilbert space with the help of Leray-Schauder Nonlinear Alternative.
LA - eng
KW - existence; multivalued map; stochastic differential inclusions; fixed point; Hilbert space; Existence; Multivalued map; Stochastic Differential Inclusions; Fixed Point; Hilbert Space
UR - http://eudml.org/doc/271169
ER -

References

top
  1. [1] N.U. Ahmed, Nonlinear stochastic differential inclusions on Banach space, Stochastic Anal. Appl. 12 (1994), 1-10. Zbl0789.60052
  2. [2] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984. Zbl0538.34007
  3. [3] P. Balasubramaniam, Existence of solutions of functional stochastic differential inclusions, Tamkang J. Math. 33 (2002), 35-43. Zbl1012.35085
  4. [4] P. Balasubramaniam, S.K. Ntouyas and D. Vinayagam, Existence of solutions of nonlinear stochastic differential inclusions in a Hilbert space, Comm. Appl. Nonlinear Anal. 12 (2005), 1-15. Zbl1086.34055
  5. [5] P. Balasubramaniam and J.Y. Park, Nonlocal Cauchy problem for second order stochastic evolution equations in Hilbert spaces, Dynamic Syst. Appl. (in press). Zbl1151.34046
  6. [6] J. Ball, Initial boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. Zbl0254.73042
  7. [7] J. Bochenek, An abstract nonlinear second order differential equation, Ann. Polon. Math. 2 (1991), 155-166. Zbl0724.34069
  8. [8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Zbl0761.60052
  9. [9] W.E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation, SIAM J. Math. Anal. 13 (1982), 739-745. Zbl0506.73057
  10. [10] K. Deimling, Multivalued Differential Equations, de Gruyter, New York, 1992. 
  11. [11] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. Zbl1025.47002
  12. [12] S. Hu and N.S. Papageorgiou, On the existence of periodic solutions for non-convex valued differential inclusions in ℝⁿ, Proc. Amer. Math. Soc. 123 (1995), 3043-3050. Zbl0851.34014
  13. [13] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I. Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997. Zbl0887.47001
  14. [14] D.N. Keck and M.A. McKibben, Functional integro-differential stochastic evolution equations in Hilbert space, J. Appl. Math. Stochastic Anal. 16 (2003), 127-147. Zbl1031.60061
  15. [15] P. Kree, Diffusion equation for multivalued stochastic differential equations, J. Funct. Anal. 49 (1982), 73-90. Zbl0528.60066
  16. [16] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. Zbl0151.10703
  17. [17] N.I. Mahmudov and M.A. McKibben, Abstract second-order damped McKean-Vlasov stochastic evolution equations, Stochastic Anal. Appl. 24 (2006), 303-328. Zbl1102.35044
  18. [18] M.A. McKibben, Second-order neutral stochastic evolution equations with heredity, J. Appl. Math. Stochastic Anal. 2 (2004), 177-192. Zbl1077.34062
  19. [19] M. Michta and J. Motyl, Second order stochastic inclusion, Stochastic Anal. Appl. 22 (2004), 701-720. Zbl1061.60043
  20. [20] M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll. Unione Mat. Ital. 4 (11) (1975), 70-76. Zbl0314.47035
  21. [21] S.K. Ntouyas, Global existence results for certain second order delay integrodifferential equations with nonlocal conditions, Dynam. Systems Appl. 7 (1998), 415-425. Zbl0914.35148
  22. [22] S.K. Ntouyas and P.Ch. Tsamatos, Global existence for second order functional semilinear equations, Period. Math. Hungar. 31 (1995), 223-228. 
  23. [23] N. Papageorgiou, Boundary value problems for evolution inclusions, Comment. Math. Univ. Carol. 29 (1988), 355-362. Zbl0696.35074
  24. [24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. 
  25. [25] R. Pettersson, Yosida approximations for multivalued stochastic differential equations, Stochastics and Stochastics Reports 52 (1995), 107-120. Zbl0864.60046
  26. [26] R. Pettersson, Existence theorem and Wong-Zakai approximations for multivalued stochastic differential equations, Probability and Mathematical Statistics 17 (1997), 29-45. Zbl0880.60062
  27. [27] T. Taniguchi, K. Liu and A. Truman, Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations 181 (2002), 72-91. Zbl1009.34074
  28. [28] C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Mathematica Academiae Scientiarum Hungaricae 32 (1978), 75-96. Zbl0388.34039
  29. [29] C.C. Travis and G.F. Webb, An abstract second order semilinear Volterra integrodifferential equation, SIAM J. Math. Anal. 10 (1979), 412-424. Zbl0406.45014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.