# Existence of solutions for second order stochastic differential inclusions in Hilbert spaces

P. Balasubramaniam; S.K. Ntouyas

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2007)

- Volume: 27, Issue: 2, page 365-384
- ISSN: 1509-9407

## Access Full Article

top## Abstract

top## How to cite

topP. Balasubramaniam, and S.K. Ntouyas. "Existence of solutions for second order stochastic differential inclusions in Hilbert spaces." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 27.2 (2007): 365-384. <http://eudml.org/doc/271169>.

@article{P2007,

abstract = {In this paper, sufficient conditions are given for the existence of solutions for a class of second order stochastic differential inclusions in Hilbert space with the help of Leray-Schauder Nonlinear Alternative.},

author = {P. Balasubramaniam, S.K. Ntouyas},

journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},

keywords = {existence; multivalued map; stochastic differential inclusions; fixed point; Hilbert space; Existence; Multivalued map; Stochastic Differential Inclusions; Fixed Point; Hilbert Space},

language = {eng},

number = {2},

pages = {365-384},

title = {Existence of solutions for second order stochastic differential inclusions in Hilbert spaces},

url = {http://eudml.org/doc/271169},

volume = {27},

year = {2007},

}

TY - JOUR

AU - P. Balasubramaniam

AU - S.K. Ntouyas

TI - Existence of solutions for second order stochastic differential inclusions in Hilbert spaces

JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization

PY - 2007

VL - 27

IS - 2

SP - 365

EP - 384

AB - In this paper, sufficient conditions are given for the existence of solutions for a class of second order stochastic differential inclusions in Hilbert space with the help of Leray-Schauder Nonlinear Alternative.

LA - eng

KW - existence; multivalued map; stochastic differential inclusions; fixed point; Hilbert space; Existence; Multivalued map; Stochastic Differential Inclusions; Fixed Point; Hilbert Space

UR - http://eudml.org/doc/271169

ER -

## References

top- [1] N.U. Ahmed, Nonlinear stochastic differential inclusions on Banach space, Stochastic Anal. Appl. 12 (1994), 1-10. Zbl0789.60052
- [2] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984. Zbl0538.34007
- [3] P. Balasubramaniam, Existence of solutions of functional stochastic differential inclusions, Tamkang J. Math. 33 (2002), 35-43. Zbl1012.35085
- [4] P. Balasubramaniam, S.K. Ntouyas and D. Vinayagam, Existence of solutions of nonlinear stochastic differential inclusions in a Hilbert space, Comm. Appl. Nonlinear Anal. 12 (2005), 1-15. Zbl1086.34055
- [5] P. Balasubramaniam and J.Y. Park, Nonlocal Cauchy problem for second order stochastic evolution equations in Hilbert spaces, Dynamic Syst. Appl. (in press). Zbl1151.34046
- [6] J. Ball, Initial boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. Zbl0254.73042
- [7] J. Bochenek, An abstract nonlinear second order differential equation, Ann. Polon. Math. 2 (1991), 155-166. Zbl0724.34069
- [8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Zbl0761.60052
- [9] W.E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation, SIAM J. Math. Anal. 13 (1982), 739-745. Zbl0506.73057
- [10] K. Deimling, Multivalued Differential Equations, de Gruyter, New York, 1992.
- [11] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. Zbl1025.47002
- [12] S. Hu and N.S. Papageorgiou, On the existence of periodic solutions for non-convex valued differential inclusions in ℝⁿ, Proc. Amer. Math. Soc. 123 (1995), 3043-3050. Zbl0851.34014
- [13] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I. Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997. Zbl0887.47001
- [14] D.N. Keck and M.A. McKibben, Functional integro-differential stochastic evolution equations in Hilbert space, J. Appl. Math. Stochastic Anal. 16 (2003), 127-147. Zbl1031.60061
- [15] P. Kree, Diffusion equation for multivalued stochastic differential equations, J. Funct. Anal. 49 (1982), 73-90. Zbl0528.60066
- [16] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. Zbl0151.10703
- [17] N.I. Mahmudov and M.A. McKibben, Abstract second-order damped McKean-Vlasov stochastic evolution equations, Stochastic Anal. Appl. 24 (2006), 303-328. Zbl1102.35044
- [18] M.A. McKibben, Second-order neutral stochastic evolution equations with heredity, J. Appl. Math. Stochastic Anal. 2 (2004), 177-192. Zbl1077.34062
- [19] M. Michta and J. Motyl, Second order stochastic inclusion, Stochastic Anal. Appl. 22 (2004), 701-720. Zbl1061.60043
- [20] M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll. Unione Mat. Ital. 4 (11) (1975), 70-76. Zbl0314.47035
- [21] S.K. Ntouyas, Global existence results for certain second order delay integrodifferential equations with nonlocal conditions, Dynam. Systems Appl. 7 (1998), 415-425. Zbl0914.35148
- [22] S.K. Ntouyas and P.Ch. Tsamatos, Global existence for second order functional semilinear equations, Period. Math. Hungar. 31 (1995), 223-228.
- [23] N. Papageorgiou, Boundary value problems for evolution inclusions, Comment. Math. Univ. Carol. 29 (1988), 355-362. Zbl0696.35074
- [24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983.
- [25] R. Pettersson, Yosida approximations for multivalued stochastic differential equations, Stochastics and Stochastics Reports 52 (1995), 107-120. Zbl0864.60046
- [26] R. Pettersson, Existence theorem and Wong-Zakai approximations for multivalued stochastic differential equations, Probability and Mathematical Statistics 17 (1997), 29-45. Zbl0880.60062
- [27] T. Taniguchi, K. Liu and A. Truman, Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations 181 (2002), 72-91. Zbl1009.34074
- [28] C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Mathematica Academiae Scientiarum Hungaricae 32 (1978), 75-96. Zbl0388.34039
- [29] C.C. Travis and G.F. Webb, An abstract second order semilinear Volterra integrodifferential equation, SIAM J. Math. Anal. 10 (1979), 412-424. Zbl0406.45014

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.