A study of second order differential inclusions with four-point integral boundary conditions

Bashir Ahmad; Sotiris K. Ntouyas

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2011)

  • Volume: 31, Issue: 2, page 137-156
  • ISSN: 1509-9407

Abstract

top
In this paper, we discuss the existence of solutions for a four-point integral boundary value problem of second order differential inclusions involving convex and non-convex multivalued maps. The existence results are obtained by applying the nonlinear alternative of Leray Schauder type and some suitable theorems of fixed point theory.

How to cite

top

Bashir Ahmad, and Sotiris K. Ntouyas. "A study of second order differential inclusions with four-point integral boundary conditions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 31.2 (2011): 137-156. <http://eudml.org/doc/271172>.

@article{BashirAhmad2011,
abstract = {In this paper, we discuss the existence of solutions for a four-point integral boundary value problem of second order differential inclusions involving convex and non-convex multivalued maps. The existence results are obtained by applying the nonlinear alternative of Leray Schauder type and some suitable theorems of fixed point theory.},
author = {Bashir Ahmad, Sotiris K. Ntouyas},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {differential inclusions; four-point integral boundary conditions; existence; nonlinear alternative of Leray Schauder type; fixed point theorems},
language = {eng},
number = {2},
pages = {137-156},
title = {A study of second order differential inclusions with four-point integral boundary conditions},
url = {http://eudml.org/doc/271172},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Bashir Ahmad
AU - Sotiris K. Ntouyas
TI - A study of second order differential inclusions with four-point integral boundary conditions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2011
VL - 31
IS - 2
SP - 137
EP - 156
AB - In this paper, we discuss the existence of solutions for a four-point integral boundary value problem of second order differential inclusions involving convex and non-convex multivalued maps. The existence results are obtained by applying the nonlinear alternative of Leray Schauder type and some suitable theorems of fixed point theory.
LA - eng
KW - differential inclusions; four-point integral boundary conditions; existence; nonlinear alternative of Leray Schauder type; fixed point theorems
UR - http://eudml.org/doc/271172
ER -

References

top
  1. [1] A.R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl. 116 (1986), 415-426. doi: 10.1016/S0022-247X(86)80006-3 Zbl0634.34009
  2. [2] B. Ahmad, Approximation of solutions of the forced Duffing equation with m-point boundary conditions, Commun. Appl. Anal. 13 (2009) 11-20. Zbl1182.34011
  3. [3] B. Ahmad, A. Alsaedi and B. Alghamdi, Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl. 9 (2008), 1727-1740. doi: 10.1016/j.nonrwa.2007.05.005 Zbl1154.34311
  4. [4] B. Ahmad and S.K. Ntouyas, Existence results for nonlocal boundary value problems for fractional differential inclusions, International Electronic Journal of Pure and Applied Mathematics 1 (2) (2010), 101-114. 
  5. [5] B. Ahmad and S.K. Ntouyas, Some existence results for boundary value problems of fractional differential inclusions with non-separated boundary conditions, Electron. J. Qual. Theory Differ. Equ. No. 71 (2010), 1-17. Zbl1206.26005
  6. [6] J. Andres, A four-point boundary value problem for the second-order ordinary differential equations, Arch. Math. (Basel) 53 (1989), 384-389. doi: 10.1007/BF01195218 Zbl0667.34024
  7. [7] J. Andres, Four-point and asymptotic boundary value problems via a possible modification of Poincaréís mapping, Math. Nachr. 149 (1990), 155-162. doi: 10.1002/mana.19901490112 
  8. [8] E.O. Ayoola, Quantum stochastic differential inclusions satisfying a general Lipschitz condition, Dynam. Systems Appl. 17 (2008), 487-502 Zbl1202.81130
  9. [9] M. Benaïm, J. Hofbauer, S. Sorin, Stochastic approximations and differential inclusions II. Applications, Math. Oper. Res. 31 (2006), 673-695. doi: 10.1287/moor.1060.0213 Zbl1284.62511
  10. [10] A.V. Bicadze and A.A. Samarskii, Some elementary generalizations of linear elliptic boundary value problems (Russian), Anal. Dokl. Akad. Nauk SSSR 185 (1969), 739-740. 
  11. [11] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009), 364-371. doi: 10.1016/j.na.2007.12.007 Zbl1169.34310
  12. [12] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. Zbl0677.54013
  13. [13] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0346.46038
  14. [14] Y.-K. Chang, W.T. Li and J.J. Nieto, Controllability of evolution differential inclusions in Banach spaces, Nonlinear Anal. 67 (2007), 623-632. doi: 10.1016/j.na.2006.06.018 
  15. [15] H. Covitz and S.B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. doi: 10.1007/BF02771543 Zbl0192.59802
  16. [16] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992. doi: 10.1515/9783110874228 Zbl0760.34002
  17. [17] P.W. Eloe and B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett. 18 (2005), 521-527. doi: 10.1016/j.aml.2004.05.009 Zbl1074.34022
  18. [18] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2005. Zbl1025.47002
  19. [19] J.R. Graef and J.R.L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. 71 (2009), 1542-1551. doi: 10.1016/j.na.2008.12.047 Zbl1189.34034
  20. [20] M. Greguš, F. Neumann and F.M. Arscott, Three-point boundary value problems in differential equations, Proc. London Math. Soc. 3 (1964), 459-470. 
  21. [21] C.P. Gupta, A second order m-point boundary value problem at resonance, Nonlinear Anal. 24 (1995), 1483-1489. doi: 10.1016/0362-546X(94)00204-U 
  22. [22] C.P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations, J. Math. Anal. Appl. 168 (1998), 540-551. doi: 10.1016/0022-247X(92)90179-H 
  23. [23] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. 
  24. [24] V.A. Il'in and E.I. Moiseev, Nonlocal boundary-value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Diff. Equ. 23 (1987), 803-810. 
  25. [25] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991. 
  26. [26] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. Zbl0151.10703
  27. [27] R. Ma, Multiple positive solutions for nonlinear m-point boundary value problems, Appl. Math. Comput. 148 (2004), 249-262. doi: 10.1016/S0096-3003(02)00843-3 Zbl1046.34030
  28. [28] S.K. Ntouyas, Nonlocal Initial and Boundary Value Problems: A survey, Handbook on Differential Equations: Ordinary Differential Equations, Edited by A. Canada, P. Drabek and A. Fonda, Elsevier Science B.V., (2005), 459-555. 
  29. [29] S.K. Ntouyas, Neumann boundary value problems for impulsive differential inclusions, Electron. J. Qual. Theory Differ. Equ. 2009, Special Edition I, No. 22, pp.~13. Zbl1195.34041
  30. [30] M. Pei and S.K. Chang, A quasilinearization method for second-order four-point boundary value problems, Appl. Math. Comput. 202 (2008), 54-66. doi: 10.1016/j.amc.2008.01.026 Zbl1161.65059
  31. [31] G.V. Smirnov, Introduction to the theory of differential inclusions, American Mathematical Society, Providence, RI, 2002. Zbl0992.34001
  32. [32] Y. Sun, L. Liu, J. Zhang and R.P. Agarwal, Positive solutions of singular three-point boundary value problems for second-order differential equations, J. Comput. Appl. Math. 230 (2009), 738-750. doi: 10.1016/j.cam.2009.01.003 Zbl1173.34016
  33. [33] J. Tariboon and T. Sittiwirattham, Positive solutions of a nonlinear three-point integral boundary value problem, Bound. Valur Probl., to appear. 
  34. [34] L. Wang, M. Pei and W. Ge, Existence and approximation of solutions for nonlinear second-order four-point boundary value problems, Math. Comput. Modelling 50 (2009), 1348-1359. doi: 10.1016/j.mcm.2008.11.018 Zbl1185.34022
  35. [35] J.R.L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc. 74 (2006), 673-693. doi: 10.1112/S0024610706023179 Zbl1115.34028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.