Optimal control problems with upper semicontinuous Hamiltonians

Arkadiusz Misztela

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2010)

  • Volume: 30, Issue: 1, page 71-99
  • ISSN: 1509-9407

Abstract

top
In this paper we give examples of value functions in Bolza problem that are not bilateral or viscosity solutions and an example of a smooth value function that is even not a classic solution (in particular, it can be neither the viscosity nor the bilateral solution) of Hamilton-Jacobi-Bellman equation with upper semicontinuous Hamiltonian. Good properties of value functions motivate us to introduce approximate solutions of equations with such type Hamiltonians. We show that the value function is the unique approximate solution.

How to cite

top

Arkadiusz Misztela. "Optimal control problems with upper semicontinuous Hamiltonians." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 30.1 (2010): 71-99. <http://eudml.org/doc/271194>.

@article{ArkadiuszMisztela2010,
abstract = {In this paper we give examples of value functions in Bolza problem that are not bilateral or viscosity solutions and an example of a smooth value function that is even not a classic solution (in particular, it can be neither the viscosity nor the bilateral solution) of Hamilton-Jacobi-Bellman equation with upper semicontinuous Hamiltonian. Good properties of value functions motivate us to introduce approximate solutions of equations with such type Hamiltonians. We show that the value function is the unique approximate solution.},
author = {Arkadiusz Misztela},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Hamilton-Jacobi-Bellman equation; Bolza problem; viscosity solution; bilateral solution; monotonic approximation; semicontinuous Hamiltonian},
language = {eng},
number = {1},
pages = {71-99},
title = {Optimal control problems with upper semicontinuous Hamiltonians},
url = {http://eudml.org/doc/271194},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Arkadiusz Misztela
TI - Optimal control problems with upper semicontinuous Hamiltonians
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2010
VL - 30
IS - 1
SP - 71
EP - 99
AB - In this paper we give examples of value functions in Bolza problem that are not bilateral or viscosity solutions and an example of a smooth value function that is even not a classic solution (in particular, it can be neither the viscosity nor the bilateral solution) of Hamilton-Jacobi-Bellman equation with upper semicontinuous Hamiltonian. Good properties of value functions motivate us to introduce approximate solutions of equations with such type Hamiltonians. We show that the value function is the unique approximate solution.
LA - eng
KW - Hamilton-Jacobi-Bellman equation; Bolza problem; viscosity solution; bilateral solution; monotonic approximation; semicontinuous Hamiltonian
UR - http://eudml.org/doc/271194
ER -

References

top
  1. [1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg-New York-Toyo, 1984. Zbl0538.34007
  2. [2] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhauser, Boston, 1997. doi:10.1007/978-0-8176-4755-1 
  3. [3] E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Commun. In Partial Differential Equations. 15 (12) (1990), 1713-1742. doi:10.1080/03605309908820745 Zbl0732.35014
  4. [4] A. Briani, Convergence of Hamilton-Jacobi equations for sequences of optimal control problems, Commun. Appl. Anal. 4 (2000), 227-244. Zbl1089.49501
  5. [5] G. Buttazzo and G. Dal Maso, Γ-convergence and optimal control problems, J. Optim. Theory Appl. 38 (1982), 385-407. doi:10.1007/BF00935345 
  6. [6] L. Cesari, Optimization - theory and applications, problems with ordinary differential equations, Springer, New York, 1983. 
  7. [7] F. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 1983. Zbl0582.49001
  8. [8] G. Dal Maso and H. Frankowska, Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton-Jacobi equations. Zbl1035.49035
  9. [9] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim. 31 (1993), 257-272. doi:10.1137/0331016 Zbl0796.49024
  10. [10] R. Goebel, Convex optimal control problems with smooth Hamiltonians, Siam J. Control Optim. 43 (2005), 1787-1811. doi:10.1137/S0363012902411581 
  11. [11] S. Plaskacz and M. Quincampoix, Discontinuous Mayer control problem under stateconstrainc, Topol. Methods Nonlinear Anal. 15 (1) (2000), 91-100. Zbl0970.49008
  12. [12] S. Plaskacz and M. Quincampoix, On representation formulas for Hamilton Jacobi's equations related to calculus of variations problems, Journal of the Juliusz Schauder Center 20 (2002), 85-118. Zbl1021.49024
  13. [13] S. Plaskacz and M. Quincampoix, Value-functions for differential games and control systems with discontinuous terminal cost, SIAM J. Control Optim. 39 (5) (2000), 1485-1498. doi:10.1137/S0363012998340387 
  14. [14] R. Rockafellar, Convex Analysis, Princeton, New Jersey, 1970. Zbl0193.18401
  15. [15] R. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi:10.1007/978-3-642-02431-3 Zbl0888.49001
  16. [16] A.I. Subbotin, Generalized solutions of first-order PDEs: The dynamical optimization perspective, Translated from Russian. Systems Control: Foundations Applications. Birkhuser Boston, Inc., Boston, MA, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.