Quadratic integral equations in reflexive Banach space

Hussein A.H. Salem

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2010)

  • Volume: 30, Issue: 1, page 61-69
  • ISSN: 1509-9407

Abstract

top
This paper is devoted to proving the existence of weak solutions to some quadratic integral equations of fractional type in a reflexive Banach space relative to the weak topology. A special case will be considered.

How to cite

top

Hussein A.H. Salem. "Quadratic integral equations in reflexive Banach space." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 30.1 (2010): 61-69. <http://eudml.org/doc/271206>.

@article{HusseinA2010,
abstract = {This paper is devoted to proving the existence of weak solutions to some quadratic integral equations of fractional type in a reflexive Banach space relative to the weak topology. A special case will be considered.},
author = {Hussein A.H. Salem},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Pettis integral; fractional calculus; fixed point theorem; quadratic integral equation},
language = {eng},
number = {1},
pages = {61-69},
title = {Quadratic integral equations in reflexive Banach space},
url = {http://eudml.org/doc/271206},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Hussein A.H. Salem
TI - Quadratic integral equations in reflexive Banach space
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2010
VL - 30
IS - 1
SP - 61
EP - 69
AB - This paper is devoted to proving the existence of weak solutions to some quadratic integral equations of fractional type in a reflexive Banach space relative to the weak topology. A special case will be considered.
LA - eng
KW - Pettis integral; fractional calculus; fixed point theorem; quadratic integral equation
UR - http://eudml.org/doc/271206
ER -

References

top
  1. [1] O. Arino, S. Gautier and T. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279. Zbl0599.34008
  2. [2] I.K. Argyros, Quadratic quations and applications to Chandrasekher's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi:10.1017/S0004972700009953 
  3. [3] J.M. Ball, Weak continuity properties of mapping and semi-groups, Proc. Royal Soc. Edinbourgh Sect. (A) 72 (1973-1974), 275-280. 
  4. [4] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 47 (2004), 271-279. doi:10.1016/S0898-1221(04)90024-7 Zbl1059.45002
  5. [5] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi:10.1006/jmaa.1998.5941 
  6. [6] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 322 (2007), 1370-1378. Zbl1123.45001
  7. [7] L.W. Busbridge, The Mathematics of Radiative Transfer, Cambridge univesrity press, Cambridge, MA, 1960. Zbl0090.21405
  8. [8] S. Chandrasekher, Radiative Transfer, Dver, New York, 1960. 
  9. [9] M. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (1) (2005), 112-119. Zbl1080.45004
  10. [10] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985. Zbl0559.47040
  11. [11] M.M. El-Borai, W.G. El-Sayed and M.I. Abbas, Monotonic solutions of a class of quadratic singular integral equation of Volterra type, Internat. J. Contemp. Math. Sci. 2 (2) (2007), 89-102. 
  12. [12] R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86. doi:10.1090/S0002-9939-1981-0603606-8 Zbl0506.28007
  13. [13] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. Zbl0998.26002
  14. [14] S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic of Gases, Amer. Math. Soc. Colloq. Publ. 31 Appl. Analysis 25 (1989), 261-266. Zbl0697.45004
  15. [15] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993. Zbl0789.26002
  16. [16] I. Podlubny, Fractional differential equations, Academic Press, San Diego, New York, London, 1999. 
  17. [17] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces, V. Lakshmikantham (ed.) (1978), 387-404. 
  18. [18] D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling 27 (5) (1998), 1-14. 
  19. [19] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. Zbl0019.41603
  20. [120] H.A.H. Salem, A.M.A. El-Sayed and O.L. Moustafa, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hungar. 42 (2) (2005), 115-113. Zbl1086.45004
  21. [121] S.G. Samko, A.A. Kilbas and O.L. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publisher, 1993. Zbl0818.26003
  22. [122] A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197-203. Zbl0238.34100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.