Quadratic integral equations in reflexive Banach space
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2010)
- Volume: 30, Issue: 1, page 61-69
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topHussein A.H. Salem. "Quadratic integral equations in reflexive Banach space." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 30.1 (2010): 61-69. <http://eudml.org/doc/271206>.
@article{HusseinA2010,
abstract = {This paper is devoted to proving the existence of weak solutions to some quadratic integral equations of fractional type in a reflexive Banach space relative to the weak topology. A special case will be considered.},
author = {Hussein A.H. Salem},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Pettis integral; fractional calculus; fixed point theorem; quadratic integral equation},
language = {eng},
number = {1},
pages = {61-69},
title = {Quadratic integral equations in reflexive Banach space},
url = {http://eudml.org/doc/271206},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Hussein A.H. Salem
TI - Quadratic integral equations in reflexive Banach space
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2010
VL - 30
IS - 1
SP - 61
EP - 69
AB - This paper is devoted to proving the existence of weak solutions to some quadratic integral equations of fractional type in a reflexive Banach space relative to the weak topology. A special case will be considered.
LA - eng
KW - Pettis integral; fractional calculus; fixed point theorem; quadratic integral equation
UR - http://eudml.org/doc/271206
ER -
References
top- [1] O. Arino, S. Gautier and T. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279. Zbl0599.34008
- [2] I.K. Argyros, Quadratic quations and applications to Chandrasekher's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi:10.1017/S0004972700009953
- [3] J.M. Ball, Weak continuity properties of mapping and semi-groups, Proc. Royal Soc. Edinbourgh Sect. (A) 72 (1973-1974), 275-280.
- [4] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 47 (2004), 271-279. doi:10.1016/S0898-1221(04)90024-7 Zbl1059.45002
- [5] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi:10.1006/jmaa.1998.5941
- [6] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 322 (2007), 1370-1378. Zbl1123.45001
- [7] L.W. Busbridge, The Mathematics of Radiative Transfer, Cambridge univesrity press, Cambridge, MA, 1960. Zbl0090.21405
- [8] S. Chandrasekher, Radiative Transfer, Dver, New York, 1960.
- [9] M. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (1) (2005), 112-119. Zbl1080.45004
- [10] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985. Zbl0559.47040
- [11] M.M. El-Borai, W.G. El-Sayed and M.I. Abbas, Monotonic solutions of a class of quadratic singular integral equation of Volterra type, Internat. J. Contemp. Math. Sci. 2 (2) (2007), 89-102.
- [12] R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86. doi:10.1090/S0002-9939-1981-0603606-8 Zbl0506.28007
- [13] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. Zbl0998.26002
- [14] S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic of Gases, Amer. Math. Soc. Colloq. Publ. 31 Appl. Analysis 25 (1989), 261-266. Zbl0697.45004
- [15] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993. Zbl0789.26002
- [16] I. Podlubny, Fractional differential equations, Academic Press, San Diego, New York, London, 1999.
- [17] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces, V. Lakshmikantham (ed.) (1978), 387-404.
- [18] D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling 27 (5) (1998), 1-14.
- [19] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. Zbl0019.41603
- [120] H.A.H. Salem, A.M.A. El-Sayed and O.L. Moustafa, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hungar. 42 (2) (2005), 115-113. Zbl1086.45004
- [121] S.G. Samko, A.A. Kilbas and O.L. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publisher, 1993. Zbl0818.26003
- [122] A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197-203. Zbl0238.34100
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.