The Saturation Number for the Length of Degree Monotone Paths
Yair Caro; Josef Lauri; Christina Zarb
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 3, page 557-569
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Bollobás, Extremal Graph Theory (Dover Publications, New York, 2004). Zbl1099.05044
- [2] Y. Caro, J. Lauri and C. Zarb, Degree monotone paths, ArXiv e-prints (2014) submitted. Zbl1317.05030
- [3] Y. Caro, J. Lauri and C. Zarb, Degree monotone paths and graph operations, ArXiv e-prints (2014) submitted.
- [4] J. Deering, Uphill and downhill domination in graphs and related graph parameters, Ph.D. Thesis, ETSU (2013).
- [5] J. Deering, T.W. Haynes, S.T. Hedetniemi and W. Jamieson, Downhill and uphill domination in graphs, (2013) submitted.
- [6] J. Deering, T.W. Haynes, S.T. Hedetniemi and W. Jamieson, A Polynomial time algorithm for downhill and uphill domination, (2013) submitted.
- [7] M. Eliáš and J. Matoušek, Higher-order Erdős-Szekeres theorems, Adv. Math. 244 (2013) 1-15. doi:10.1016/j.aim.2013.04.020[Crossref] Zbl1283.05175
- [8] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math.Monthly 71 (1964) 1107-1110. doi:10.2307/2311408[Crossref]
- [9] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935) 463-470. Zbl0012.27010
- [10] J.R. Faudree, R.J. Faudree and J.R. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. 18 (2011) #DS19. Zbl1222.05113
- [11] T.W. Haynes, S.T. Hedetniemi, J.D. Jamieson and W.B. Jamieson, Downhill dom- ination in graphs, Discuss. Math. Graph Theory 34 (2014) 603-612. doi:10.7151/dmgt.1760[Crossref] Zbl1295.05176
- [12] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210. doi:10.1002/jgt.3190100209 [Crossref] Zbl0593.05041