Completely Independent Spanning Trees in (Partial) k-Trees
Masayoshi Matsushita; Yota Otachi; Toru Araki
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 3, page 427-437
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Araki, Dirac’s condition for completely independent spanning trees, J. Graph Theory 77 (2014) 171-179. doi:10.1002/jgt.21780[WoS][Crossref] Zbl1303.05133
- [2] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1989) 11-24. doi:10.1016/0166-218X(89)90031-0[Crossref] Zbl0666.68067
- [3] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998) 1-45. doi:10.1016/S0304-3975(97)00228-4[Crossref] Zbl0912.68148
- [4] H.L. Bodlaender, F.V. Fomin, P.A. Golovach, Y. Otachi and E.J. van Leeuwen, Parameterized complexity of the spanning tree congestion problem, Algorithmica 64 (2012) 85-111. doi:10.1007/s00453-011-9565-7[WoS][Crossref] Zbl1253.68163
- [5] H.L. Bodlaender and A.M.C.A. Koster, Combinatorial optimization on graphs of bounded treewidth, Comput. J. 51 (2008) 255-269. doi:10.1093/comjnl/bxm037 [WoS][Crossref]
- [6] B. Courcelle, The monadic second-order logic of graphs III: tree-decompositions, minors and complexity issues, Theor. Inform. Appl. 26 (1992) 257-286. Zbl0754.03006
- [7] T. Hasunuma, Completely independent spanning trees in the underlying graph of a line digraph, Discrete Math. 234 (2001) 149-157. doi:10.1016/S0012-365X(00)00377-0[Crossref] Zbl0984.05022
- [8] T. Hasunuma, Completely independent spanning trees in maximal planar graphs in: Proceedings of 28th Graph Theoretic Concepts of Computer Science (WG 2002), LNCS 2573, Springer-Verlag Berlin (2002) 235-245. doi:10.1007/3-540-36379-3 21[Crossref]
- [9] T. Hasunuma and C. Morisaka, Completely independent spanning trees in torus networks, Networks 60 (2012) 59-69. doi:10.1002/net.20460[WoS][Crossref] Zbl1251.68034
- [10] P. Hlinĕný, S. Oum, D. Seese and G. Gottlob, Width parameters beyond tree-width and their applications, Comput. J. 51 (2008) 326-362. doi:10.1093/comjnl/bxm052[WoS][Crossref]
- [11] F. Péterfalvi, Two counterexamples on completely independent spanning trees, Dis- crete Math. 312 (2012) 808-810. doi:10.1016/j.disc.2011.11.0 [WoS][Crossref] Zbl1238.05060