Constrained Colouring and σ-Hypergraphs

Yair Caro; Josef Lauri; Christina Zarb

Discussiones Mathematicae Graph Theory (2015)

  • Volume: 35, Issue: 1, page 171-189
  • ISSN: 2083-5892

Abstract

top
A constrained colouring or, more specifically, an (α, β)-colouring of a hypergraph H, is an assignment of colours to its vertices such that no edge of H contains less than α or more than β vertices with different colours. This notion, introduced by Bujtás and Tuza, generalises both classical hypergraph colourings and more general Voloshin colourings of hypergraphs. In fact, for r-uniform hypergraphs, classical colourings correspond to (2, r)-colourings while an important instance of Voloshin colourings of r-uniform hypergraphs gives (2, r −1)-colourings. One intriguing aspect of all these colourings, not present in classical colourings, is that H can have gaps in its (α, β)-spectrum, that is, for k1 < k2 < k3, H would be (α, β)-colourable using k1 and using k3 colours, but not using k2 colours. In an earlier paper, the first two authors introduced, for being a partition of r, a very versatile type of r-uniform hypergraph which they called -hypergraphs. They showed that, by simple manipulation of the param- eters of a σ -hypergraph H, one can obtain families of hypergraphs which have (2, r − 1)-colourings exhibiting various interesting chromatic proper- ties. They also showed that, if the smallest part of is at least 2, then H will never have a gap in its (2, r − 1)-spectrum but, quite surprisingly, they found examples where gaps re-appear when α = β = 2. In this paper we extend many of the results of the first two authors to more general (α, β)-colourings, and we study the phenomenon of the disappearance and re-appearance of gaps and show that it is not just the behaviour of a particular example but we place it within the context of a more general study of constrained colourings of σ -hypergraphs.

How to cite

top

Yair Caro, Josef Lauri, and Christina Zarb. "Constrained Colouring and σ-Hypergraphs." Discussiones Mathematicae Graph Theory 35.1 (2015): 171-189. <http://eudml.org/doc/271236>.

@article{YairCaro2015,
abstract = {A constrained colouring or, more specifically, an (α, β)-colouring of a hypergraph H, is an assignment of colours to its vertices such that no edge of H contains less than α or more than β vertices with different colours. This notion, introduced by Bujtás and Tuza, generalises both classical hypergraph colourings and more general Voloshin colourings of hypergraphs. In fact, for r-uniform hypergraphs, classical colourings correspond to (2, r)-colourings while an important instance of Voloshin colourings of r-uniform hypergraphs gives (2, r −1)-colourings. One intriguing aspect of all these colourings, not present in classical colourings, is that H can have gaps in its (α, β)-spectrum, that is, for k1 < k2 < k3, H would be (α, β)-colourable using k1 and using k3 colours, but not using k2 colours. In an earlier paper, the first two authors introduced, for being a partition of r, a very versatile type of r-uniform hypergraph which they called -hypergraphs. They showed that, by simple manipulation of the param- eters of a σ -hypergraph H, one can obtain families of hypergraphs which have (2, r − 1)-colourings exhibiting various interesting chromatic proper- ties. They also showed that, if the smallest part of is at least 2, then H will never have a gap in its (2, r − 1)-spectrum but, quite surprisingly, they found examples where gaps re-appear when α = β = 2. In this paper we extend many of the results of the first two authors to more general (α, β)-colourings, and we study the phenomenon of the disappearance and re-appearance of gaps and show that it is not just the behaviour of a particular example but we place it within the context of a more general study of constrained colourings of σ -hypergraphs.},
author = {Yair Caro, Josef Lauri, Christina Zarb},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {σ-hypergraphs; constrained colourings; hypergraph colourings.; -hypergraphs; hypergraph colourings},
language = {eng},
number = {1},
pages = {171-189},
title = {Constrained Colouring and σ-Hypergraphs},
url = {http://eudml.org/doc/271236},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Yair Caro
AU - Josef Lauri
AU - Christina Zarb
TI - Constrained Colouring and σ-Hypergraphs
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 1
SP - 171
EP - 189
AB - A constrained colouring or, more specifically, an (α, β)-colouring of a hypergraph H, is an assignment of colours to its vertices such that no edge of H contains less than α or more than β vertices with different colours. This notion, introduced by Bujtás and Tuza, generalises both classical hypergraph colourings and more general Voloshin colourings of hypergraphs. In fact, for r-uniform hypergraphs, classical colourings correspond to (2, r)-colourings while an important instance of Voloshin colourings of r-uniform hypergraphs gives (2, r −1)-colourings. One intriguing aspect of all these colourings, not present in classical colourings, is that H can have gaps in its (α, β)-spectrum, that is, for k1 < k2 < k3, H would be (α, β)-colourable using k1 and using k3 colours, but not using k2 colours. In an earlier paper, the first two authors introduced, for being a partition of r, a very versatile type of r-uniform hypergraph which they called -hypergraphs. They showed that, by simple manipulation of the param- eters of a σ -hypergraph H, one can obtain families of hypergraphs which have (2, r − 1)-colourings exhibiting various interesting chromatic proper- ties. They also showed that, if the smallest part of is at least 2, then H will never have a gap in its (2, r − 1)-spectrum but, quite surprisingly, they found examples where gaps re-appear when α = β = 2. In this paper we extend many of the results of the first two authors to more general (α, β)-colourings, and we study the phenomenon of the disappearance and re-appearance of gaps and show that it is not just the behaviour of a particular example but we place it within the context of a more general study of constrained colourings of σ -hypergraphs.
LA - eng
KW - σ-hypergraphs; constrained colourings; hypergraph colourings.; -hypergraphs; hypergraph colourings
UR - http://eudml.org/doc/271236
ER -

References

top
  1. [1] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, I: General results, Discrete Math. 309 (2009) 4890-4902. doi:10.1016/j.disc.2008.04.019[WoS][Crossref] 
  2. [2] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees, Discrete Math. 309 (2009) 6391-6401. doi:10.1016/j.disc.2008.10.023[WoS][Crossref] 
  3. [3] C. Bujtás and Zs. Tuza, Color-bounded Hypergraphs, III: Model comparison, Appl. Anal. Discrete Math. 1 (2007) 36-55. doi:10.2298/AADM0701036B[Crossref] 
  4. [4] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, IV: Stable colorings of hyper- trees, Discrete Math. 310 (2010) 1463-1474. doi:10.1016/j.disc.2009.07.014[WoS][Crossref] 
  5. [5] C. Bujtás, Zs. Tuza and V.I. Voloshin, Color-bounded Hypergraphs,V: Host graphs and subdivisions, Discuss. Math. Graph Theory 31 (2011) 223-238. doi:10.7151/dmgt.1541[Crossref] 
  6. [6] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, VI: Structural and functional jumps in complexity, Discrete Math. 313 (2013) 1965-1977. doi:10.1016/j.disc.2012.09.020[WoS][Crossref] 
  7. [7] Y. Caro and J. Lauri, Non-monochromatic non-rainbow colourings of σ-hypergraphs, Discrete Math. 318 (2014) 96-104. doi:10.1016/j.disc.2013.11.016[Crossref][WoS] Zbl1281.05061
  8. [8] Z. Dvořák, J. Kára, D. Král and O.Pangrác, Feasible sets of pattern hypergraphs, Electron. J. Combin. 17 (2010) #R15. Zbl1193.05076
  9. [9] L. Gionfriddo, Voloshin’s colourings of P3-designs, Discrete Math. 275 (2004) 137-149. doi:10.1016/S0012-365X(03)00104-3[Crossref] 
  10. [10] M. Hegyhát and Zs. Tuza, Colorability of mixed hypergraphs and their chromatic inversions, J. Combin. Optim. 25 (2013) 737-751. doi:10.1007/s10878-012-9559-7[Crossref][WoS] Zbl1271.05070
  11. [11] A. Jaffe, T. Moscibroda and S. Sen, On the price of equivocation in byzantine agree- ment, in: Proceedings of the 2012 ACM symposium on Principles of distributed computing (ACM , New York, 2012) 309-318. doi:10.1145/2332432.2332491[Crossref] Zbl1301.68068
  12. [12] T. Jiang, D.Mubayi, Zs. Tuza, V.I. Voloshin and D.B.West, The chromatic spectrum of mixed hypergraphs, Graphs Combin. 18 (2002) 309-318. Zbl0994.05063
  13. [13] S. Sen, New Systems and Algorithms for Scalable Fault Tolerance (Ph.D. Thesis, Princeton University, 2013). 
  14. [14] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms, and Applications (American Mathematical Society, 2002). Zbl1001.05003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.