Spaces of Lipschitz type, embeddings and entropy numbers
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1999
Access Full Book
topAbstract
topHow to cite
topEdmunds D. E., and Haroske D.. Spaces of Lipschitz type, embeddings and entropy numbers. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1999. <http://eudml.org/doc/271244>.
@book{EdmundsD1999,
	abstract = {AbstractWe establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the “almost” Lipschitz continuity of elements of the Sobolev space $H^\{1+n/p\}_p(ℝⁿ)$, where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains.CONTENTSIntroduction...........................................................51. Preliminaries.....................................................6 Spaces on ℝⁿ......................................................6 Atomic decompositions........................................8 Spaces on domains...........................................10 Embeddings.......................................................11 Entropy numbers................................................112. Sharpness.......................................................133. Lipschitz embedding, entropy numbers...........214. Comparison with related results......................30 Embeddings.......................................................30 Entropy numbers...............................................36 Estimate from above..........................................37References.........................................................421991 Mathematics Subject Classification: 26A16, 46E35, 41A46, 46E15.},
	author = {Edmunds D. E., Haroske D.},
	keywords = {limiting embeddings; Besov spaces; fractional Sobolev spaces; compactness; entropy numbers},
	language = {eng},
	location = {Warszawa},
	publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
	title = {Spaces of Lipschitz type, embeddings and entropy numbers},
	url = {http://eudml.org/doc/271244},
	year = {1999},
}
TY  - BOOK
AU  - Edmunds D. E.
AU  - Haroske D.
TI  - Spaces of Lipschitz type, embeddings and entropy numbers
PY  - 1999
CY  - Warszawa
PB  - Instytut Matematyczny Polskiej Akademi Nauk
AB  - AbstractWe establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the “almost” Lipschitz continuity of elements of the Sobolev space $H^{1+n/p}_p(ℝⁿ)$, where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains.CONTENTSIntroduction...........................................................51. Preliminaries.....................................................6 Spaces on ℝⁿ......................................................6 Atomic decompositions........................................8 Spaces on domains...........................................10 Embeddings.......................................................11 Entropy numbers................................................112. Sharpness.......................................................133. Lipschitz embedding, entropy numbers...........214. Comparison with related results......................30 Embeddings.......................................................30 Entropy numbers...............................................36 Estimate from above..........................................37References.........................................................421991 Mathematics Subject Classification: 26A16, 46E35, 41A46, 46E15.
LA  - eng
KW  - limiting embeddings; Besov spaces; fractional Sobolev spaces; compactness; entropy numbers
UR  - http://eudml.org/doc/271244
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
