Spaces of Lipschitz type, embeddings and entropy numbers

Edmunds D. E.; Haroske D.

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1999

Abstract

top
AbstractWe establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the “almost” Lipschitz continuity of elements of the Sobolev space H p 1 + n / p ( ) , where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains.CONTENTSIntroduction...........................................................51. Preliminaries.....................................................6 Spaces on ℝⁿ......................................................6 Atomic decompositions........................................8 Spaces on domains...........................................10 Embeddings.......................................................11 Entropy numbers................................................112. Sharpness.......................................................133. Lipschitz embedding, entropy numbers...........214. Comparison with related results......................30 Embeddings.......................................................30 Entropy numbers...............................................36 Estimate from above..........................................37References.........................................................421991 Mathematics Subject Classification: 26A16, 46E35, 41A46, 46E15.

How to cite

top

Edmunds D. E., and Haroske D.. Spaces of Lipschitz type, embeddings and entropy numbers. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1999. <http://eudml.org/doc/271244>.

@book{EdmundsD1999,
abstract = {AbstractWe establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the “almost” Lipschitz continuity of elements of the Sobolev space $H^\{1+n/p\}_p(ℝⁿ)$, where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains.CONTENTSIntroduction...........................................................51. Preliminaries.....................................................6 Spaces on ℝⁿ......................................................6 Atomic decompositions........................................8 Spaces on domains...........................................10 Embeddings.......................................................11 Entropy numbers................................................112. Sharpness.......................................................133. Lipschitz embedding, entropy numbers...........214. Comparison with related results......................30 Embeddings.......................................................30 Entropy numbers...............................................36 Estimate from above..........................................37References.........................................................421991 Mathematics Subject Classification: 26A16, 46E35, 41A46, 46E15.},
author = {Edmunds D. E., Haroske D.},
keywords = {limiting embeddings; Besov spaces; fractional Sobolev spaces; compactness; entropy numbers},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Spaces of Lipschitz type, embeddings and entropy numbers},
url = {http://eudml.org/doc/271244},
year = {1999},
}

TY - BOOK
AU - Edmunds D. E.
AU - Haroske D.
TI - Spaces of Lipschitz type, embeddings and entropy numbers
PY - 1999
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractWe establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the “almost” Lipschitz continuity of elements of the Sobolev space $H^{1+n/p}_p(ℝⁿ)$, where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains.CONTENTSIntroduction...........................................................51. Preliminaries.....................................................6 Spaces on ℝⁿ......................................................6 Atomic decompositions........................................8 Spaces on domains...........................................10 Embeddings.......................................................11 Entropy numbers................................................112. Sharpness.......................................................133. Lipschitz embedding, entropy numbers...........214. Comparison with related results......................30 Embeddings.......................................................30 Entropy numbers...............................................36 Estimate from above..........................................37References.........................................................421991 Mathematics Subject Classification: 26A16, 46E35, 41A46, 46E15.
LA - eng
KW - limiting embeddings; Besov spaces; fractional Sobolev spaces; compactness; entropy numbers
UR - http://eudml.org/doc/271244
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.